Difference between revisions of "Anisotropic kernel"
Ulf Rehmann (talk | contribs) m (MR/ZBL numbers added) |
Ulf Rehmann (talk | contribs) m (tex done) |
||
Line 1: | Line 1: | ||
− | The subgroup | + | {{TEX|done}} |
+ | The subgroup $ D $ | ||
+ | of a semi-simple [[Algebraic group|algebraic group]] $ G $ , | ||
+ | defined over a field $ k $ , | ||
+ | which is the commutator subgroup of the centralizer of a maximal $ k $ - | ||
+ | split torus $ S \subset G $ ; | ||
+ | $ D = [ {Z _{G}} (S),\ {Z _{G}} (S)] $ . | ||
+ | The anisotropic kernel $ D $ | ||
+ | is a semi-simple [[Anisotropic group|anisotropic group]] defined over $ k $ ; | ||
+ | $ { \mathop{\rm rank}\nolimits} \ D = { \mathop{\rm rank}\nolimits} \ G - { \mathop{\rm rank}\nolimits _{k}} \ G $ . | ||
+ | The concept of the anisotropic kernel plays an important role in the study of the $ k $ - | ||
+ | structure of $ G $ [[#References|[1]]]. If $ D = G $ , | ||
+ | i.e. if $ { \mathop{\rm rank}\nolimits _{k}} \ G = 0 $ , | ||
+ | then $ G $ | ||
+ | is anisotropic over $ k $ ; | ||
+ | if $ D = (e) $ , | ||
+ | the group $ G $ | ||
+ | is called quasi-split over $ k $ . | ||
+ | |||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> J. Tits, "Classification of algebraic simple groups" , ''Algebraic Groups and Discontinuous Subgroups'' , ''Proc. Symp. Pure Math.'' , '''9''' , Amer. Math. Soc. (1966) pp. 33–62 {{MR|}} {{ZBL|}} </TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> A. Borel, J. Tits, "Groupes réductifs" ''Publ. Math. IHES'' , '''27''' (1965) pp. 55–150 {{MR|0207712}} {{ZBL|0145.17402}} </TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> J. Tits, "Classification of algebraic simple groups" , ''Algebraic Groups and Discontinuous Subgroups'' , ''Proc. Symp. Pure Math.'' , '''9''' , Amer. Math. Soc. (1966) pp. 33–62 {{MR|}} {{ZBL|}} </TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> A. Borel, J. Tits, "Groupes réductifs" ''Publ. Math. IHES'' , '''27''' (1965) pp. 55–150 {{MR|0207712}} {{ZBL|0145.17402}} </TD></TR></table> |
Latest revision as of 10:43, 17 December 2019
The subgroup $ D $ of a semi-simple algebraic group $ G $ , defined over a field $ k $ , which is the commutator subgroup of the centralizer of a maximal $ k $ - split torus $ S \subset G $ ; $ D = [ {Z _{G}} (S),\ {Z _{G}} (S)] $ . The anisotropic kernel $ D $ is a semi-simple anisotropic group defined over $ k $ ; $ { \mathop{\rm rank}\nolimits} \ D = { \mathop{\rm rank}\nolimits} \ G - { \mathop{\rm rank}\nolimits _{k}} \ G $ . The concept of the anisotropic kernel plays an important role in the study of the $ k $ - structure of $ G $ [1]. If $ D = G $ , i.e. if $ { \mathop{\rm rank}\nolimits _{k}} \ G = 0 $ , then $ G $ is anisotropic over $ k $ ; if $ D = (e) $ , the group $ G $ is called quasi-split over $ k $ .
References
[1] | J. Tits, "Classification of algebraic simple groups" , Algebraic Groups and Discontinuous Subgroups , Proc. Symp. Pure Math. , 9 , Amer. Math. Soc. (1966) pp. 33–62 |
[2] | A. Borel, J. Tits, "Groupes réductifs" Publ. Math. IHES , 27 (1965) pp. 55–150 MR0207712 Zbl 0145.17402 |
Anisotropic kernel. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Anisotropic_kernel&oldid=44271