Difference between revisions of "Lee distance"
From Encyclopedia of Mathematics
(Start article: Lee distance) |
m (typo) |
||
Line 3: | Line 3: | ||
A metric on words over an alphabet $A = \{ a_1, \ldots, a_m \}$ where a single error is changing a letter one place in cyclic order. If the alphabet is identified with $\mathbf{Z}_m = \{0, \ldots, m-1 \}$ then the Lee distance between $x, y \in \mathbf{Z}_m^n$ is | A metric on words over an alphabet $A = \{ a_1, \ldots, a_m \}$ where a single error is changing a letter one place in cyclic order. If the alphabet is identified with $\mathbf{Z}_m = \{0, \ldots, m-1 \}$ then the Lee distance between $x, y \in \mathbf{Z}_m^n$ is | ||
$$ | $$ | ||
− | d_L (x,y) = \sum_{i=1}^n \min\left(|x_i-y_i|, m-|x_i- | + | d_L (x,y) = \sum_{i=1}^n \min\left(|x_i-y_i|, m-|x_i-y_i|\right) \ . |
$$ | $$ | ||
Revision as of 15:28, 11 April 2018
A metric on words over an alphabet $A = \{ a_1, \ldots, a_m \}$ where a single error is changing a letter one place in cyclic order. If the alphabet is identified with $\mathbf{Z}_m = \{0, \ldots, m-1 \}$ then the Lee distance between $x, y \in \mathbf{Z}_m^n$ is
$$
d_L (x,y) = \sum_{i=1}^n \min\left(|x_i-y_i|, m-|x_i-y_i|\right) \ .
$$
When $m=2$ or $m=3$, Lee distance coincides with Hamming distance. The Lee distance on $\mathbf{Z}_4$ corresponds to Hamming distance on $\mathbf{F}_2^2$ under the Gray map $$ 0 \mapsto 00 \ ,\ \ 1 \mapsto 01 \ ,\ \ 2 \mapsto 11 \ ,\ \ 3 \mapsto 10 \ . $$
References
- Deza, Michel Marie; Deza, Elena Encyclopedia of distances (3rd ed.) Springer (2014) ISBN 978-3-662-44341-5 Zbl 1301.51001
- Roth, Ron Introduction to Coding Theory, Cambridge University Press (2006) ISBN 0-521-84504-1 DOI 10.1017/CBO9780511808968.011 Zbl 1092.94001
How to Cite This Entry:
Lee distance. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Lee_distance&oldid=43120
Lee distance. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Lee_distance&oldid=43120