Namespaces
Variants
Actions

Difference between revisions of "User:Richard Pinch/sandbox-12"

From Encyclopedia of Mathematics
Jump to: navigation, search
(→‎Ordered topological space: define Priestley space)
Line 89: Line 89:
 
An ordered topological space is ''totally order-disconnected'' if whenever $x \not\le y$ there exists a [[clopen]] down-set $D$ such that $x \in D$ and $y \not\in D$.
 
An ordered topological space is ''totally order-disconnected'' if whenever $x \not\le y$ there exists a [[clopen]] down-set $D$ such that $x \in D$ and $y \not\in D$.
  
A '''Priestley space''' is a compact totally order-disconnected space.
+
A '''Priestley space''' is a compact totally order-disconnected space.  An '''Ockham space''' is a Priestley space equipped with an order-reversing continuous mapping $g$: see also [[Ockham algebra]].
  
 
====References====
 
====References====
 
* Samuel Eilenberg, "Ordered Topological Spaces", ''American Journal of Mathematics'' '''63''' (1941) 39-45  {{DOI|10.2307/2371274}}  {{ZBL|0024.19203}}
 
* Samuel Eilenberg, "Ordered Topological Spaces", ''American Journal of Mathematics'' '''63''' (1941) 39-45  {{DOI|10.2307/2371274}}  {{ZBL|0024.19203}}
 
* T.S. Blyth, "Lattices and ordered algebraic structures", Springer (2005) ISBN 1-85233-905-5  {{ZBL|1073.06001}}
 
* T.S. Blyth, "Lattices and ordered algebraic structures", Springer (2005) ISBN 1-85233-905-5  {{ZBL|1073.06001}}

Revision as of 22:21, 26 January 2018

Dyck path

A lattice path on the square lattice from the origin $(0,0)$ to some point $(n,n)$ consisting of $2n$ steps of the form $N : (x,y) \rightarrow (x,y+1)$ and $E : (x,y) \rightarrow (x+1,y)$ with the property that the path never passes below the line $y=x$.

The number of Dyck paths of length $2n$ is given by the $n$-th Catalan number $$ C_n = \frac{1}{n+1}\binom{2n}{n} \ . $$

References

Catalan number

The $n$-th Catalan number $$ C_n = \frac{1}{n+1}\binom{2n}{n} \ . $$ The generating function is given by $$ \sum_{n=1}^\infty C_n z^n = \frac{1-\sqrt{1-4z}}{2z} \ . $$ The Catalan numbers appear in the enumeration of a number of combinatorially defined object:

References

Poisson ratio

The ratio of longitudinal extension to lateral compression when an elastic substance is put under tension.

See: Elasticity, mathematical theory of; Lamé constants.

References

  • Horace Lamb, "Statics", Cambridge University Press (1960)

Elastic modulus

Young's modulus

The ratio of longitudinal extension to force applied per unit area when an elastic substance is put under tension.

See: Elasticity, mathematical theory of; Lamé constants.

References

  • Horace Lamb, "Statics", Cambridge University Press (1960)

Partition symbol

A notation used to compactly express propositions of partition calculus. The symbol $$ \alpha \rightarrow (\beta)_\gamma^r $$ for cardinals $\alpha,\beta,\gamma$ and natural number $r$, denotes the following proposition.

Given a set $S$ and a colouring of $S^r$ into a set of $\gamma$ colours, there exists a subset $T$ of $S$ of cardinality $|T|=\beta$ such that the colouring restricted to $T^r$ is monochrome.

Here a colouring of a set $X$ by a set of colours $C$ is simply a partition of $X$ into parts indexed by the set $C$.

The symbol $$ \alpha \rightarrow (\beta_1,\ldots,\beta_j)^r $$ denotes the following proposition:

Given a set $S$ of cardinality $\alpha$ and a colouring of $S^r$ by $j$ colours, there exists an index $i$ subset $T$ of $S$ of cardinality $|T|=\beta_i$ such that the colouring restricted to $T^r$ is monochrome.

Examples.

  • Ramsey's theorem: $\omega \rightarrow (\omega)_n^r$.
  • Sierpinski's theorem: $c \not\rightarrow (\omega_1,\omega_2)^2$.


References

  • M.E. Rudin, "Lectures on set theoretic topology", Amer. Math. Soc. (1975) ISBN 0-8218-1673-X Zbl 0318.54001

Isthmus

bridge, co-loop

An isthmus of a graph is an edge for which deletion increases the number of connected components of the graph.

An isthmus of a matroid $M$ on a set $E$ is an element of $E$ which is in every basis for $M$. An element of $E$ is a co-loop of $M$ if and only if it is a loop of the dual matroid $M^*$, that is, does not belong to any base of $M^*$. If $M$ is a graphic matroid, then the definitions coincide.

References

  • J. G. Oxley, "Matroid Theory" (2 ed) Oxford University Press (2011) ISBN 978-0-19-856694-6 Zbl 1254.05002
  • D. J. A. Welsh, "Matroid Theory", Dover (2010) [1976] ISBN 0486474399 0343.05002

Ordered topological space

A topological space $X$ with a partial order ${\le}$ related to the topology by the condition that if $x < y$ then there are neighbourhoods $N_x$, $N_y$ such that $x < y'$ for all $y' \in N_y$ and $x' < y$ for all $x' \in N_x$. An ordered topological space is necessarily a Hausdorff space.

An ordered topological space is totally order-disconnected if whenever $x \not\le y$ there exists a clopen down-set $D$ such that $x \in D$ and $y \not\in D$.

A Priestley space is a compact totally order-disconnected space. An Ockham space is a Priestley space equipped with an order-reversing continuous mapping $g$: see also Ockham algebra.

References

  • Samuel Eilenberg, "Ordered Topological Spaces", American Journal of Mathematics 63 (1941) 39-45 DOI 10.2307/2371274 Zbl 0024.19203
  • T.S. Blyth, "Lattices and ordered algebraic structures", Springer (2005) ISBN 1-85233-905-5 Zbl 1073.06001
How to Cite This Entry:
Richard Pinch/sandbox-12. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Richard_Pinch/sandbox-12&oldid=42795