Namespaces
Variants
Actions

Difference between revisions of "Hopf orders, applications of"

From Encyclopedia of Mathematics
Jump to: navigation, search
(link)
(→‎References: expand bibliodata)
 
Line 16: Line 16:
  
 
====References====
 
====References====
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  L. Childs,  "Taming wild extensions with Hopf algebras"  ''Trans. Amer. Math. Soc.'' , '''304'''  (1987)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  C. Greither,  "Extensions of finite group schemes, and Hopf Galois theory over a complete discrete valuation ring"  ''Math. Z.'' , '''210'''  (1992)  pp. 37–67</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  T. Sekiguchi,  N. Suwa,  "Théories de Kummer–Artin–Schreier–Witt"  ''C.R. Acad. Sci. Ser. I'' , '''319'''  (1994)  pp. 1–21</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top">  R.G. Underwood,  "The group of Galois extensions in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h110/h110290/h11029084.png" />"  ''Trans. Amer. Math. Soc.'' , '''349'''  (1997)  pp. 1503–1514</TD></TR></table>
+
<table>
 +
<TR><TD valign="top">[a1]</TD> <TD valign="top">  L. Childs,  "Taming wild extensions with Hopf algebras"  ''Trans. Amer. Math. Soc.'' , '''304'''  (1987) {{ZBL|0632.12013}}</TD></TR>
 +
<TR><TD valign="top">[a2]</TD> <TD valign="top">  C. Greither,  "Extensions of finite group schemes, and Hopf Galois theory over a complete discrete valuation ring"  ''Math. Z.'' , '''210'''  (1992)  pp. 37–67 {{ZBL|0737.11038}}</TD></TR>
 +
<TR><TD valign="top">[a3]</TD> <TD valign="top">  T. Sekiguchi,  N. Suwa,  "Théories de Kummer–Artin–Schreier–Witt"  ''C.R. Acad. Sci. Ser. I'' , '''319'''  (1994)  pp. 1–21 {{ZBL|0845.14023}}</TD></TR>
 +
<TR><TD valign="top">[a4]</TD> <TD valign="top">  R.G. Underwood,  "The group of Galois extensions in $KC_{p^2}$"  ''Trans. Amer. Math. Soc.'' , '''349'''  (1997)  pp. 1503–1514 {{ZBL|0957.16010}}</TD></TR>
 +
</table>

Latest revision as of 19:17, 12 January 2018

Let be a finite extension of the -adic rationals endowed with the -adic valuation with and let be its ring of integers (cf. also Extension of a field; Norm on a field; -adic number). Let be the ramification index of in and assume that contains a primitive rd root of unity. If is an -Hopf order in (cf. Hopf order), then the group scheme can be resolved, i.e., involved in a short exact sequence of group schemes (taken in the flat topology). Here, and are represented by the -Hopf algebras and , respectively ( an indeterminate). One uses this short exact sequence in the long exact sequence in cohomology to construct , which is identified with the group of -Galois extensions of (cf. also Galois extension). One has , where the class corresponds to the isomorphism class of the -Galois extension

with (see [a2]). Moreover, if , , is the dual of the Larson order (cf. Hopf order), then can be involved in the short exact sequence of group schemes , where and are represented by the -Hopf algebras and for appropriate polynomials , respectively (see [a3]). Work has been completed to obtain a resolution of when is an arbitrary -Hopf order in (see [a4]). This yields (via the long exact sequence in cohomology) a characterization of all -Galois extensions. In general, if is an -Hopf order in , then is an -Galois extension if and only if is an -Galois algebra (see [a1]).

Examples of -Galois extensions where is a Tate–Oort–Larson order in can be recovered using the corresponding classification theorem. For example, if is a Kummer extension of prime degree, then is an -Galois algebra if and only if the ramification number of satisfies (see [a1]). Therefore, is an -Galois extension, thus

for some parameter . Knowledge of Tate–Oort Galois extensions can also be used to characterize the ring of integers of certain degree- extensions. For example, if , , is a Greither order with and , then there exists a finite extension so that is an -Galois algebra. In this case, is of the form

where is an element in and is an -Galois extension (see [a2]).

References

[a1] L. Childs, "Taming wild extensions with Hopf algebras" Trans. Amer. Math. Soc. , 304 (1987) Zbl 0632.12013
[a2] C. Greither, "Extensions of finite group schemes, and Hopf Galois theory over a complete discrete valuation ring" Math. Z. , 210 (1992) pp. 37–67 Zbl 0737.11038
[a3] T. Sekiguchi, N. Suwa, "Théories de Kummer–Artin–Schreier–Witt" C.R. Acad. Sci. Ser. I , 319 (1994) pp. 1–21 Zbl 0845.14023
[a4] R.G. Underwood, "The group of Galois extensions in $KC_{p^2}$" Trans. Amer. Math. Soc. , 349 (1997) pp. 1503–1514 Zbl 0957.16010
How to Cite This Entry:
Hopf orders, applications of. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Hopf_orders,_applications_of&oldid=42724
This article was adapted from an original article by R.G. Underwood (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article