|
|
Line 1: |
Line 1: |
− | ''of a regular covering <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g045/g045260/g0452601.png" />'' | + | ''of a regular covering $p:X \rightarrow Y$'' |
| | | |
− | The group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g045/g045260/g0452602.png" /> of those homeomorphisms <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g045/g045260/g0452603.png" /> of the space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g045/g045260/g0452604.png" /> onto itself such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g045/g045260/g0452605.png" />. (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g045/g045260/g0452606.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g045/g045260/g0452607.png" /> are understood to be connected, locally path-connected, Hausdorff spaces.) | + | The group $\Gamma(p)$ of those homeomorphisms $\gamma$ of the space $X$ onto itself such that $\gamma p = p$. ($X$ and $Y$ are understood to be connected, locally path-connected, Hausdorff spaces.) |
| | | |
− | The group of covering transformations of the covering of the circle by the real line <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g045/g045260/g0452608.png" /> given by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g045/g045260/g0452609.png" /> is thus the group of translations <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g045/g045260/g04526010.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g045/g045260/g04526011.png" />. | + | The group of covering transformations of the covering of the circle by the real line $\mathbf{R}$ given by $t \mapsto (\cos t,\sin t)$ is thus the group of translations $t \mapsto t + 2\pi n$, $n \in \mathbf{Z}$. |
| | | |
− | <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g045/g045260/g04526012.png" /> is a [[Discrete group of transformations|discrete group of transformations]] of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g045/g045260/g04526013.png" /> acting freely (that is, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g045/g045260/g04526014.png" /> for some <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g045/g045260/g04526015.png" /> implies <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g045/g045260/g04526016.png" />), and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g045/g045260/g04526017.png" /> is naturally isomorphic to the quotient space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g045/g045260/g04526018.png" />. The group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g045/g045260/g04526019.png" /> is isomorphic to the quotient group of the [[Fundamental group|fundamental group]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g045/g045260/g04526020.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g045/g045260/g04526021.png" />, by the image of the group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g045/g045260/g04526022.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g045/g045260/g04526023.png" />, under the homomorphism induced by the mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g045/g045260/g04526024.png" />. In particular, if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g045/g045260/g04526025.png" /> is the universal covering, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g045/g045260/g04526026.png" /> is isomorphic to the fundamental group of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g045/g045260/g04526027.png" />.
| + | $\Gamma(p)$ is a [[discrete group of transformations]] of $X$ acting freely (that is, $\gamma(x) = x$ for some $x \in X$ implies $\gamma=1$), and $Y$ is naturally isomorphic to the quotient space $X/\Gamma(p)$. The group $\Gamma(p)$ is isomorphic to the quotient group of the [[fundamental group]] $\pi_1(Y,y_0)$, where $y_0 \in Y$, by the image of the group $\pi_1(X,x_0)$, where $p(x_0)=y_0$, under the homomorphism induced by the mapping $p$. In particular, if $p$ is the [[universal covering]], then $\Gamma(p)$ is isomorphic to the fundamental group of $Y$. |
| | | |
| ====References==== | | ====References==== |
− | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> S.-T. Hu, "Homotopy theory" , Acad. Press (1959)</TD></TR></table> | + | <table> |
| + | <TR><TD valign="top">[1]</TD> <TD valign="top"> S.-T. Hu, "Homotopy theory" , Acad. Press (1959)</TD></TR> |
| + | </table> |
| | | |
| | | |
| | | |
| ====Comments==== | | ====Comments==== |
− | See also [[Covering|Covering]]; [[Universal covering|Universal covering]]. | + | See also [[Covering]]; [[Universal covering]]. |
| | | |
| ====References==== | | ====References==== |
− | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> E.H. Spanier, "Algebraic topology" , McGraw-Hill (1966) pp. Chapt. 2</TD></TR></table> | + | <table> |
| + | <TR><TD valign="top">[a1]</TD> <TD valign="top"> E.H. Spanier, "Algebraic topology" , McGraw-Hill (1966) pp. Chapt. 2</TD></TR> |
| + | </table> |
| + | |
| + | {{TEX|done}} |
Latest revision as of 19:57, 10 December 2017
of a regular covering $p:X \rightarrow Y$
The group $\Gamma(p)$ of those homeomorphisms $\gamma$ of the space $X$ onto itself such that $\gamma p = p$. ($X$ and $Y$ are understood to be connected, locally path-connected, Hausdorff spaces.)
The group of covering transformations of the covering of the circle by the real line $\mathbf{R}$ given by $t \mapsto (\cos t,\sin t)$ is thus the group of translations $t \mapsto t + 2\pi n$, $n \in \mathbf{Z}$.
$\Gamma(p)$ is a discrete group of transformations of $X$ acting freely (that is, $\gamma(x) = x$ for some $x \in X$ implies $\gamma=1$), and $Y$ is naturally isomorphic to the quotient space $X/\Gamma(p)$. The group $\Gamma(p)$ is isomorphic to the quotient group of the fundamental group $\pi_1(Y,y_0)$, where $y_0 \in Y$, by the image of the group $\pi_1(X,x_0)$, where $p(x_0)=y_0$, under the homomorphism induced by the mapping $p$. In particular, if $p$ is the universal covering, then $\Gamma(p)$ is isomorphic to the fundamental group of $Y$.
References
[1] | S.-T. Hu, "Homotopy theory" , Acad. Press (1959) |
See also Covering; Universal covering.
References
[a1] | E.H. Spanier, "Algebraic topology" , McGraw-Hill (1966) pp. Chapt. 2 |
How to Cite This Entry:
Group of covering transformations. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Group_of_covering_transformations&oldid=42469
This article was adapted from an original article by E.B. Vinberg (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098.
See original article