Difference between revisions of "P-point"
(Importing text file) |
|||
Line 5: | Line 5: | ||
2) every countable intersection of neighbourhoods of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130010/p13001016.png" /> contains a neighbourhood of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130010/p13001017.png" />. The latter is commonly used to define <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130010/p13001018.png" />-points in arbitrary topological spaces. | 2) every countable intersection of neighbourhoods of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130010/p13001016.png" /> contains a neighbourhood of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130010/p13001017.png" />. The latter is commonly used to define <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130010/p13001018.png" />-points in arbitrary topological spaces. | ||
− | Of particular interest are <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130010/p13001019.png" />-points in the space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130010/p13001020.png" />, the remainder in the [[Stone–Čech compactification|Stone–Čech compactification]] of the space of natural numbers. This is so because W. Rudin [[#References|[a2]]] proved that the space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130010/p13001021.png" /> has <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130010/p13001022.png" />-points if the [[Continuum hypothesis|continuum hypothesis]] is assumed; this showed that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130010/p13001023.png" /> cannot be proved homogeneous (cf. also [[Homogeneous space|Homogeneous space]]), because not every point in an infinite compact space can be a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130010/p13001024.png" />-point. Points of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130010/p13001025.png" /> are identified with free ultrafilters on the set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130010/p13001026.png" /> (cf. also [[Ultrafilter|Ultrafilter]]). A point or ultrafilter <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130010/p13001027.png" /> is a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130010/p13001028.png" />-point if and only if for every sequence <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130010/p13001029.png" /> of elements of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130010/p13001030.png" /> there is an element <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130010/p13001031.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130010/p13001032.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130010/p13001033.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130010/p13001034.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130010/p13001035.png" /> means that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130010/p13001036.png" /> is finite. Equivalently, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130010/p13001037.png" /> is a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130010/p13001038.png" />-point if and only if for every partition <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130010/p13001039.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130010/p13001040.png" /> either there is an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130010/p13001041.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130010/p13001042.png" /> or there is a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130010/p13001043.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130010/p13001044.png" /> is finite for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130010/p13001045.png" />. S. Shelah [[#References|[a3]]] constructed a model of set theory in which <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130010/p13001046.png" /> has no <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130010/p13001047.png" />-points, thus showing that Rudin's theorem is not definitive. | + | Of particular interest are <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130010/p13001019.png" />-points in the space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130010/p13001020.png" />, the remainder in the [[Stone–Čech compactification|Stone–Čech compactification]] of the space of natural numbers (cf. [[Cech-Stone compactification of omega]]). This is so because W. Rudin [[#References|[a2]]] proved that the space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130010/p13001021.png" /> has <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130010/p13001022.png" />-points if the [[Continuum hypothesis|continuum hypothesis]] is assumed; this showed that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130010/p13001023.png" /> cannot be proved homogeneous (cf. also [[Homogeneous space|Homogeneous space]]), because not every point in an infinite compact space can be a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130010/p13001024.png" />-point. Points of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130010/p13001025.png" /> are identified with free ultrafilters on the set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130010/p13001026.png" /> (cf. also [[Ultrafilter|Ultrafilter]]). A point or ultrafilter <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130010/p13001027.png" /> is a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130010/p13001028.png" />-point if and only if for every sequence <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130010/p13001029.png" /> of elements of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130010/p13001030.png" /> there is an element <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130010/p13001031.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130010/p13001032.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130010/p13001033.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130010/p13001034.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130010/p13001035.png" /> means that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130010/p13001036.png" /> is finite. Equivalently, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130010/p13001037.png" /> is a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130010/p13001038.png" />-point if and only if for every partition <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130010/p13001039.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130010/p13001040.png" /> either there is an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130010/p13001041.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130010/p13001042.png" /> or there is a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130010/p13001043.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130010/p13001044.png" /> is finite for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130010/p13001045.png" />. S. Shelah [[#References|[a3]]] constructed a model of set theory in which <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130010/p13001046.png" /> has no <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130010/p13001047.png" />-points, thus showing that Rudin's theorem is not definitive. |
There is continued interest in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130010/p13001050.png" />-point ultrafilters because of their combinatorial properties; e.g., <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130010/p13001051.png" /> is a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130010/p13001052.png" />-point if and only if for every function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130010/p13001053.png" /> there is an element <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130010/p13001054.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130010/p13001055.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130010/p13001056.png" /> is a converging sequence (possibly to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130010/p13001057.png" /> or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130010/p13001058.png" />). | There is continued interest in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130010/p13001050.png" />-point ultrafilters because of their combinatorial properties; e.g., <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130010/p13001051.png" /> is a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130010/p13001052.png" />-point if and only if for every function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130010/p13001053.png" /> there is an element <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130010/p13001054.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130010/p13001055.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130010/p13001056.png" /> is a converging sequence (possibly to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130010/p13001057.png" /> or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p130/p130010/p13001058.png" />). |
Revision as of 21:27, 19 November 2017
As defined in [a1], a point in a completely-regular space at which any prime ideal of the ring of real-valued continuous functions is maximal (cf. also Continuous function; Maximal ideal). A prime ideal is "at x" if for all ; thus is a -point if and only if is the only prime ideal at . Equivalent formulations are:
1) if is a continuous function and , then vanishes on a neighbourhood of ; and
2) every countable intersection of neighbourhoods of contains a neighbourhood of . The latter is commonly used to define -points in arbitrary topological spaces.
Of particular interest are -points in the space , the remainder in the Stone–Čech compactification of the space of natural numbers (cf. Cech-Stone compactification of omega). This is so because W. Rudin [a2] proved that the space has -points if the continuum hypothesis is assumed; this showed that cannot be proved homogeneous (cf. also Homogeneous space), because not every point in an infinite compact space can be a -point. Points of are identified with free ultrafilters on the set (cf. also Ultrafilter). A point or ultrafilter is a -point if and only if for every sequence of elements of there is an element of such that for all , where means that is finite. Equivalently, is a -point if and only if for every partition of either there is an such that or there is a such that is finite for all . S. Shelah [a3] constructed a model of set theory in which has no -points, thus showing that Rudin's theorem is not definitive.
There is continued interest in -point ultrafilters because of their combinatorial properties; e.g., is a -point if and only if for every function there is an element of such that is a converging sequence (possibly to or ).
References
[a1] | L. Gillman, M. Henriksen, "Concerning rings of continuous functions" Trans. Amer. Math. Soc. , 77 (1954) pp. 340–362 |
[a2] | W. Rudin, "Homogeneity problems in the theory of Čech compactifications" Duke Math. J. , 23 (1956) pp. 409–419; 633 |
[a3] | E. Wimmers, "The Shelah -point independence theorem" Israel J. Math. , 43 (1982) pp. 28–48 |
P-point. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=P-point&oldid=42346