Namespaces
Variants
Actions

Difference between revisions of "Zassenhaus group"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
(TeX done)
 
Line 1: Line 1:
A doubly-transitive group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/z/z099/z099160/z0991601.png" /> of permutations on a finite set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/z/z099/z099160/z0991602.png" /> (cf. [[Permutation group|Permutation group]]) in which only the identity permutation fixes more than two elements of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/z/z099/z099160/z0991603.png" /> and such that for any pair <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/z/z099/z099160/z0991604.png" /> the subgroup <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/z/z099/z099160/z0991605.png" /> is non-trivial, where
+
{{TEX|done}}{{MSC|20B20}}
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/z/z099/z099160/z0991606.png" /></td> </tr></table>
+
A doubly-transitive group $G$ of permutations on a finite set $M$ (cf. [[Permutation group]]) in which only the identity permutation fixes more than two elements of $M$ and such that for any pair $a,b \in M$ the subgroup $H_{a,b}$ is non-trivial, where
 
+
$$
such groups were first considered by H. Zassenhaus in [[#References|[1]]]. The class of Zassenhaus groups includes two families of finite simple groups: the projective special linear groups <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/z/z099/z099160/z0991607.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/z/z099/z099160/z0991608.png" /> (cf. [[Special linear group|Special linear group]]), and the Suzuki groups (cf. [[Suzuki group|Suzuki group]]).
+
H_{a,b} = \{ h \in G : h(a)=a\,,\ h(b)=b \} \ ;
 +
$$
 +
such groups were first considered by H. Zassenhaus in [[#References|[1]]]. The class of Zassenhaus groups includes two families of finite simple groups: the projective [[special linear group]]s $\mathrm{PSL}(2,q)$, $q>3$, and the [[Suzuki group]]s.
  
 
====References====
 
====References====
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  H. Zassenhaus,  "Kennzeichnung endlicher linearer Gruppen als Permutationsgruppen"  ''Abh. Math. Sem. Univ. Hamburg'' , '''11'''  (1935)  pp. 17–40</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  D. Gorenstein,  "Finite groups" , Harper &amp; Row  (1968)</TD></TR></table>
+
<table>
 +
<TR><TD valign="top">[1]</TD> <TD valign="top">  H. Zassenhaus,  "Kennzeichnung endlicher linearer Gruppen als Permutationsgruppen"  ''Abh. Math. Sem. Univ. Hamburg'' , '''11'''  (1935)  pp. 17–40</TD></TR>
 +
<TR><TD valign="top">[2]</TD> <TD valign="top">  D. Gorenstein,  "Finite groups" , Harper &amp; Row  (1968)</TD></TR>
 +
</table>
  
  
Line 14: Line 19:
  
 
====References====
 
====References====
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  B. Huppert,  "Finite groups" , '''3''' , Springer  (1967)</TD></TR></table>
+
<table>
 +
<TR><TD valign="top">[a1]</TD> <TD valign="top">  B. Huppert,  "Finite groups" , '''3''' , Springer  (1967)</TD></TR>
 +
</table>

Latest revision as of 19:15, 22 October 2017

2020 Mathematics Subject Classification: Primary: 20B20 [MSN][ZBL]

A doubly-transitive group $G$ of permutations on a finite set $M$ (cf. Permutation group) in which only the identity permutation fixes more than two elements of $M$ and such that for any pair $a,b \in M$ the subgroup $H_{a,b}$ is non-trivial, where $$ H_{a,b} = \{ h \in G : h(a)=a\,,\ h(b)=b \} \ ; $$ such groups were first considered by H. Zassenhaus in [1]. The class of Zassenhaus groups includes two families of finite simple groups: the projective special linear groups $\mathrm{PSL}(2,q)$, $q>3$, and the Suzuki groups.

References

[1] H. Zassenhaus, "Kennzeichnung endlicher linearer Gruppen als Permutationsgruppen" Abh. Math. Sem. Univ. Hamburg , 11 (1935) pp. 17–40
[2] D. Gorenstein, "Finite groups" , Harper & Row (1968)


Comments

References

[a1] B. Huppert, "Finite groups" , 3 , Springer (1967)
How to Cite This Entry:
Zassenhaus group. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Zassenhaus_group&oldid=42165
This article was adapted from an original article by N.N. Vil'yams (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article