Difference between revisions of "Köthe-Toeplitz dual"
Ulf Rehmann (talk | contribs) m (moved Kothe-Toeplitz dual to Köthe-Toeplitz dual: accented title) |
m (links) |
||
Line 9: | Line 9: | ||
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k110/k110150/k1101509.png" /></td> </tr></table> | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k110/k110150/k1101509.png" /></td> </tr></table> | ||
− | which for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k110/k110150/k11015010.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k110/k110150/k11015011.png" />, the sets of convergent or bounded series, reduce to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k110/k110150/k11015012.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k110/k110150/k11015013.png" />, the so-called <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k110/k110150/k11015015.png" />- and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k110/k110150/k11015017.png" />-duals, also referred to as Köthe–Toeplitz duals by some authors (see [[#References|[a2]]]). If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k110/k110150/k11015018.png" /> denotes any of the symbols <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k110/k110150/k11015019.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k110/k110150/k11015020.png" /> or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k110/k110150/k11015021.png" />, then for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k110/k110150/k11015022.png" /> one has: <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k110/k110150/k11015023.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k110/k110150/k11015024.png" />, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k110/k110150/k11015025.png" /> implies <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k110/k110150/k11015026.png" />. A set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k110/k110150/k11015027.png" /> is called (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k110/k110150/k11015031.png" />-) perfect if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k110/k110150/k11015032.png" />; <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k110/k110150/k11015033.png" /> is perfect, so is <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k110/k110150/k11015034.png" /> (the set of sequences that terminate in naughts); the set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k110/k110150/k11015035.png" /> of convergent sequences is not perfect. For any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k110/k110150/k11015036.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k110/k110150/k11015037.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k110/k110150/k11015038.png" /> (and analogously <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k110/k110150/k11015039.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k110/k110150/k11015040.png" />) are in [[Duality|duality]] with respect to the [[Bilinear functional|bilinear functional]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k110/k110150/k11015041.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k110/k110150/k11015042.png" /> defined by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k110/k110150/k11015043.png" />, and various topologies may be introduced on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k110/k110150/k11015044.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k110/k110150/k11015045.png" />, usually on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k110/k110150/k11015046.png" /> the weak <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k110/k110150/k11015047.png" />, the Mackey <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k110/k110150/k11015048.png" />, or the normal topology is taken (see [[#References|[a1]]]; cf. also [[Weak topology|Weak topology]]; [[Mackey topology|Mackey topology]]; [[Normal space|Normal space]]). If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k110/k110150/k11015049.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k110/k110150/k11015050.png" /> are BK- | + | which for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k110/k110150/k11015010.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k110/k110150/k11015011.png" />, the sets of convergent or bounded series, reduce to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k110/k110150/k11015012.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k110/k110150/k11015013.png" />, the so-called <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k110/k110150/k11015015.png" />- and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k110/k110150/k11015017.png" />-duals, also referred to as Köthe–Toeplitz duals by some authors (see [[#References|[a2]]]). If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k110/k110150/k11015018.png" /> denotes any of the symbols <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k110/k110150/k11015019.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k110/k110150/k11015020.png" /> or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k110/k110150/k11015021.png" />, then for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k110/k110150/k11015022.png" /> one has: <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k110/k110150/k11015023.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k110/k110150/k11015024.png" />, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k110/k110150/k11015025.png" /> implies <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k110/k110150/k11015026.png" />. A set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k110/k110150/k11015027.png" /> is called (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k110/k110150/k11015031.png" />-) perfect if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k110/k110150/k11015032.png" />; <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k110/k110150/k11015033.png" /> is perfect, so is <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k110/k110150/k11015034.png" /> (the set of sequences that terminate in naughts); the set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k110/k110150/k11015035.png" /> of convergent sequences is not perfect. For any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k110/k110150/k11015036.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k110/k110150/k11015037.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k110/k110150/k11015038.png" /> (and analogously <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k110/k110150/k11015039.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k110/k110150/k11015040.png" />) are in [[Duality|duality]] with respect to the [[Bilinear functional|bilinear functional]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k110/k110150/k11015041.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k110/k110150/k11015042.png" /> defined by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k110/k110150/k11015043.png" />, and various topologies may be introduced on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k110/k110150/k11015044.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k110/k110150/k11015045.png" />, usually on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k110/k110150/k11015046.png" /> the weak <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k110/k110150/k11015047.png" />, the Mackey <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k110/k110150/k11015048.png" />, or the normal topology is taken (see [[#References|[a1]]]; cf. also [[Weak topology|Weak topology]]; [[Mackey topology|Mackey topology]]; [[Normal space|Normal space]]). If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k110/k110150/k11015049.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k110/k110150/k11015050.png" /> are [[BK-space]]s (i.e., Banach [[FK-space]]s), then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k110/k110150/k11015051.png" /> is a BK-space with respect to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k110/k110150/k11015052.png" />. However, if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k110/k110150/k11015053.png" /> is not a BK space, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k110/k110150/k11015054.png" /> need not even be an [[FK-space|FK-space]]; for instance, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k110/k110150/k11015055.png" /> is not an FK-space. The <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k110/k110150/k11015056.png" />-dual of an FK space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k110/k110150/k11015057.png" /> is contained in its continuous dual <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k110/k110150/k11015058.png" /> in the following sense: The mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k110/k110150/k11015059.png" /> defined by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k110/k110150/k11015060.png" /> (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k110/k110150/k11015061.png" />) is linear and one-to-one; if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k110/k110150/k11015062.png" /> has the AK-property (i.e. every sequence <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k110/k110150/k11015063.png" /> has a unique representation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k110/k110150/k11015064.png" />, where for each <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k110/k110150/k11015065.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k110/k110150/k11015066.png" /> is the sequence with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k110/k110150/k11015067.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k110/k110150/k11015068.png" /> if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k110/k110150/k11015069.png" />), then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/k/k110/k110150/k11015070.png" /> is an [[Isomorphism|isomorphism]]. |
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> W.H. Ruckle, "Sequence spaces" , Pitman (1989)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> A. Wilansky, "Summability through functional analysis" , North-Holland (1984)</TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> W.H. Ruckle, "Sequence spaces" , Pitman (1989)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> A. Wilansky, "Summability through functional analysis" , North-Holland (1984)</TD></TR></table> |
Revision as of 16:31, 4 October 2017
For any subset of the set of all sequences , the set
is called a Köthe–Toeplitz or -dual of . These duals play an important role in the representation of linear functionals (cf. Linear functional) and the characterization of matrix transformations between sequence spaces. They are special cases of the more general multiplier sequence spaces
which for and , the sets of convergent or bounded series, reduce to and , the so-called - and -duals, also referred to as Köthe–Toeplitz duals by some authors (see [a2]). If denotes any of the symbols , or , then for all one has: , , and implies . A set is called (-) perfect if ; is perfect, so is (the set of sequences that terminate in naughts); the set of convergent sequences is not perfect. For any , and (and analogously and ) are in duality with respect to the bilinear functional on defined by , and various topologies may be introduced on and , usually on the weak , the Mackey , or the normal topology is taken (see [a1]; cf. also Weak topology; Mackey topology; Normal space). If and are BK-spaces (i.e., Banach FK-spaces), then is a BK-space with respect to . However, if is not a BK space, then need not even be an FK-space; for instance, is not an FK-space. The -dual of an FK space is contained in its continuous dual in the following sense: The mapping defined by () is linear and one-to-one; if has the AK-property (i.e. every sequence has a unique representation , where for each , is the sequence with and if ), then is an isomorphism.
References
[a1] | W.H. Ruckle, "Sequence spaces" , Pitman (1989) |
[a2] | A. Wilansky, "Summability through functional analysis" , North-Holland (1984) |
Köthe-Toeplitz dual. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=K%C3%B6the-Toeplitz_dual&oldid=41997