Difference between revisions of "Reflexive space"
(Importing text file) |
(TeX done) |
||
Line 1: | Line 1: | ||
− | A [[ | + | A [[Banach space]] $X$ that coincides under the canonical imbedding with its second dual $X^{{*}{*}}$ (cf. [[Adjoint space]]). More precisely, let $X^{*}$ be the space dual to $X$, i.e. the set of all continuous linear functionals defined on $X$. If $(x,f)$ is the value of the functional $f \in X^{*}$ on an element $x \in X$, then with a fixed $x$ and $f$ running through $X^{*}$, the formula $(x,f) = \mathcal{F}_x(f)$ defines a linear functional on $X^{*}$, that is, an element of the space $X^{{*}{*}}$. Let $\tilde X \subseteq X^{{*}{*}}$ be the set of such functionals. The correspondence $x \mapsto \mathcal{F}_x$ is an isomorphism which does not change the norm: $\Vert x \Vert = \Vert \mathcal{F}_x \Vert$. If $\tilde X = X^{{*}{*}}$, then the space $X$ is called reflexive. The spaces $\ell_p$ and $L_p(a,b)$, $p>1$, are reflexive, and the space $C[a,b]$ is not reflexive. |
− | A space | + | A space $X$ is reflexive if and only if the space $X^{*}$ is reflexive. Another criteria of reflexivity of a Banach space $X$ is weak compactness (cf. [[Weak topology]]) of the unit ball of this space. |
A reflexive space is weakly complete and a closed subspace of a reflexive space is reflexive. | A reflexive space is weakly complete and a closed subspace of a reflexive space is reflexive. | ||
− | The concept of reflexivity naturally extends to | + | The concept of reflexivity naturally extends to [[locally convex space]]s. |
− | |||
====References==== | ====References==== | ||
− | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> N. Dunford, J.T. Schwartz, "Linear operators. General theory" , '''1''' , Interscience (1958)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> K. Yosida, "Functional analysis" , Springer (1980) pp. Chapt. 8, §1</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> L.V. Kantorovich, G.P. Akilov, "Functional analysis" , Pergamon (1982) (Translated from Russian)</TD></TR></table> | + | <table> |
+ | <TR><TD valign="top">[1]</TD> <TD valign="top"> N. Dunford, J.T. Schwartz, "Linear operators. General theory" , '''1''' , Interscience (1958)</TD></TR> | ||
+ | <TR><TD valign="top">[2]</TD> <TD valign="top"> K. Yosida, "Functional analysis" , Springer (1980) pp. Chapt. 8, §1</TD></TR> | ||
+ | <TR><TD valign="top">[3]</TD> <TD valign="top"> L.V. Kantorovich, G.P. Akilov, "Functional analysis" , Pergamon (1982) (Translated from Russian)</TD></TR> | ||
+ | </table> | ||
Line 16: | Line 19: | ||
====References==== | ====References==== | ||
− | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> B. Beauzamy, "Introduction to Banach spaces and their geometry" , North-Holland (1982)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> M.M. Day, "Normed linear spaces" , Springer (1973)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> D. van Dulst, "Reflexive and superreflexive Banach spaces" , ''MC Tracts'' , '''102''' , Math. Centre (1978)</TD></TR></table> | + | <table> |
+ | <TR><TD valign="top">[a1]</TD> <TD valign="top"> B. Beauzamy, "Introduction to Banach spaces and their geometry" , North-Holland (1982)</TD></TR> | ||
+ | <TR><TD valign="top">[a2]</TD> <TD valign="top"> M.M. Day, "Normed linear spaces" , Springer (1973)</TD></TR> | ||
+ | <TR><TD valign="top">[a3]</TD> <TD valign="top"> D. van Dulst, "Reflexive and superreflexive Banach spaces" , ''MC Tracts'' , '''102''' , Math. Centre (1978)</TD></TR> | ||
+ | </table> | ||
+ | |||
+ | {{TEX|done}} |
Latest revision as of 18:18, 26 September 2017
A Banach space $X$ that coincides under the canonical imbedding with its second dual $X^{{*}{*}}$ (cf. Adjoint space). More precisely, let $X^{*}$ be the space dual to $X$, i.e. the set of all continuous linear functionals defined on $X$. If $(x,f)$ is the value of the functional $f \in X^{*}$ on an element $x \in X$, then with a fixed $x$ and $f$ running through $X^{*}$, the formula $(x,f) = \mathcal{F}_x(f)$ defines a linear functional on $X^{*}$, that is, an element of the space $X^{{*}{*}}$. Let $\tilde X \subseteq X^{{*}{*}}$ be the set of such functionals. The correspondence $x \mapsto \mathcal{F}_x$ is an isomorphism which does not change the norm: $\Vert x \Vert = \Vert \mathcal{F}_x \Vert$. If $\tilde X = X^{{*}{*}}$, then the space $X$ is called reflexive. The spaces $\ell_p$ and $L_p(a,b)$, $p>1$, are reflexive, and the space $C[a,b]$ is not reflexive.
A space $X$ is reflexive if and only if the space $X^{*}$ is reflexive. Another criteria of reflexivity of a Banach space $X$ is weak compactness (cf. Weak topology) of the unit ball of this space.
A reflexive space is weakly complete and a closed subspace of a reflexive space is reflexive.
The concept of reflexivity naturally extends to locally convex spaces.
References
[1] | N. Dunford, J.T. Schwartz, "Linear operators. General theory" , 1 , Interscience (1958) |
[2] | K. Yosida, "Functional analysis" , Springer (1980) pp. Chapt. 8, §1 |
[3] | L.V. Kantorovich, G.P. Akilov, "Functional analysis" , Pergamon (1982) (Translated from Russian) |
Comments
References
[a1] | B. Beauzamy, "Introduction to Banach spaces and their geometry" , North-Holland (1982) |
[a2] | M.M. Day, "Normed linear spaces" , Springer (1973) |
[a3] | D. van Dulst, "Reflexive and superreflexive Banach spaces" , MC Tracts , 102 , Math. Centre (1978) |
Reflexive space. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Reflexive_space&oldid=41979