Namespaces
Variants
Actions

Difference between revisions of "Young subgroup"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
(TeX done)
 
Line 1: Line 1:
Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y099/y099080/y0990801.png" /> be a partition of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y099/y099080/y0990802.png" /> into <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y099/y099080/y0990803.png" /> disjoint subsets. Then the corresponding Young subgroup of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y099/y099080/y0990804.png" />, the symmetric group on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y099/y099080/y0990805.png" /> letters, is the subgroup
+
Let $\{1,2,\ldots,n\} = \cup_{i=1}^k \alpha_i$ be a partition of $\{1,2,\ldots,n\}$ into $k$ disjoint subsets. Then the corresponding Young subgroup of $S_n$, the [[symmetric group]] on $n$ letters, is the subgroup
 +
$$
 +
S_{\alpha_1} \times \cdots \times S_{\alpha_k} \,,
 +
$$
 +
where $S_{\alpha_i} = \{ \sigma \in S_n : \sigma(j) = j \ \text{for all}\ j \not\in \alpha_i \}$. Sometimes only the particular cases
 +
$$
 +
S_{\alpha_1} \times \cdots \times S_{\alpha_k}
 +
$$
 +
are meant where $\alpha_i = \{\lambda_{i-1} + 1,\ldots, \lambda_i\}$, where $\lambda_0 = 0$ and $\lambda = (\lambda_1,\ldots,\lambda_k)$ is a [[partition]] of the natural number $n$, i.e. $\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_k$, $\sum \lambda_i = n$.
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y099/y099080/y0990806.png" /></td> </tr></table>
+
====References====
 +
<table>
 +
<TR><TD valign="top">[a1]</TD> <TD valign="top">  G.D. James,  "The representation theory of the symmetric groups" , Springer  (1978)  pp. 13</TD></TR>
 +
<TR><TD valign="top">[a2]</TD> <TD valign="top">  A. Kerber,  "Representations of permutation groups" , '''I''' , Springer  (1971)  pp. 17</TD></TR>
 +
</table>
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y099/y099080/y0990807.png" />. Sometimes only the particular cases
+
{{TEX|done}}
 
 
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y099/y099080/y0990808.png" /></td> </tr></table>
 
 
 
are meant where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y099/y099080/y0990809.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y099/y099080/y09908010.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y099/y099080/y09908011.png" /> is a partition of the natural number <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y099/y099080/y09908012.png" />, i.e. <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y099/y099080/y09908013.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/y/y099/y099080/y09908014.png" />.
 
 
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  G.D. James,  "The representation theory of the symmetric groups" , Springer  (1978)  pp. 13</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  A. Kerber,  "Representations of permutation groups" , '''I''' , Springer  (1971)  pp. 17</TD></TR></table>
 

Latest revision as of 17:28, 22 September 2017

Let $\{1,2,\ldots,n\} = \cup_{i=1}^k \alpha_i$ be a partition of $\{1,2,\ldots,n\}$ into $k$ disjoint subsets. Then the corresponding Young subgroup of $S_n$, the symmetric group on $n$ letters, is the subgroup $$ S_{\alpha_1} \times \cdots \times S_{\alpha_k} \,, $$ where $S_{\alpha_i} = \{ \sigma \in S_n : \sigma(j) = j \ \text{for all}\ j \not\in \alpha_i \}$. Sometimes only the particular cases $$ S_{\alpha_1} \times \cdots \times S_{\alpha_k} $$ are meant where $\alpha_i = \{\lambda_{i-1} + 1,\ldots, \lambda_i\}$, where $\lambda_0 = 0$ and $\lambda = (\lambda_1,\ldots,\lambda_k)$ is a partition of the natural number $n$, i.e. $\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_k$, $\sum \lambda_i = n$.

References

[a1] G.D. James, "The representation theory of the symmetric groups" , Springer (1978) pp. 13
[a2] A. Kerber, "Representations of permutation groups" , I , Springer (1971) pp. 17
How to Cite This Entry:
Young subgroup. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Young_subgroup&oldid=41926