Namespaces
Variants
Actions

Difference between revisions of "Heron formula"

From Encyclopedia of Mathematics
Jump to: navigation, search
(TeX)
(→‎References: expand bibliodata)
Line 12: Line 12:
  
 
====References====
 
====References====
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  M. Berger,  "Geometry" , '''1–2''' , Springer  (1987)  (Translated from French)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  H.S.M. Coxeter,  "Introduction to geometry" , Wiley  (1961)</TD></TR></table>
+
<table>
 +
<TR><TD valign="top">[a1]</TD> <TD valign="top">  M. Berger,  "Geometry" , '''1–2''' , Springer  (1987)  (Translated from French) {{ZBL|1153.51001}}</TD></TR>
 +
<TR><TD valign="top">[a2]</TD> <TD valign="top">  H.S.M. Coxeter,  "Introduction to geometry" , Wiley  (1961) {{ZBL|0095.34502}}</TD></TR>
 +
</table>

Revision as of 16:53, 17 September 2017

A formula expressing the surface area $S$ of a triangle in terms of its sides $a$, $b$ and $c$:

$$S=\sqrt{p(p-a)(p-b)(p-c)},$$

where $p=(a+b+c)/2$. Named after Heron (1st century A.D.).


Comments

References

[a1] M. Berger, "Geometry" , 1–2 , Springer (1987) (Translated from French) Zbl 1153.51001
[a2] H.S.M. Coxeter, "Introduction to geometry" , Wiley (1961) Zbl 0095.34502
How to Cite This Entry:
Heron formula. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Heron_formula&oldid=41879
This article was adapted from an original article by A.B. Ivanov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article