Difference between revisions of "Partial recursive operator"
(Importing text file) |
(TeX done) |
||
Line 1: | Line 1: | ||
− | A mapping from the class of all one-place functions into itself, defined as follows. Let | + | A mapping from the class of all one-place functions into itself, defined as follows. Let $\Phi_z$ be an [[enumeration operator]]. To this operator one naturally associates another operator $\Psi$, acting on one-place functions. More precisely, each function $\phi$ has a graph — the set of all pairs $(x,y)$ such that $\phi(x) = y$. Given a fixed coding method of pairs of natural numbers, this graph can be treated as a set $\tau(\phi)$ of natural numbers. If now $\Phi_z(\tau(\phi))$ is also the graph of some function $\psi$, then one puts $\Psi(\phi) = \psi$. Otherwise $\Psi(\phi)$ is not defined. Thus, to each enumeration operator $\Phi_z$ one associates a partial recursive operator $\Psi$. |
If a partial recursive operator is defined on all functions, then it is called a recursive operator. A partial recursive operator that is defined on all everywhere-defined functions and that maps everywhere-defined functions to everywhere-defined functions is called a general recursive operator. Not every partial recursive operator can be extended to a recursive operator. Every general recursive operator is a recursive operator. The converse does not hold. | If a partial recursive operator is defined on all functions, then it is called a recursive operator. A partial recursive operator that is defined on all everywhere-defined functions and that maps everywhere-defined functions to everywhere-defined functions is called a general recursive operator. Not every partial recursive operator can be extended to a recursive operator. Every general recursive operator is a recursive operator. The converse does not hold. | ||
====References==== | ====References==== | ||
− | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> H. Rogers jr., "Theory of recursive functions and effective computability" , McGraw-Hill (1967)</TD></TR></table> | + | <table> |
+ | <TR><TD valign="top">[1]</TD> <TD valign="top"> H. Rogers jr., "Theory of recursive functions and effective computability" , McGraw-Hill (1967)</TD></TR> | ||
+ | </table> | ||
+ | ====Comments==== | ||
+ | Cf. also [[Recursive function]]; [[Computable function]]. | ||
− | + | {{TEX|done}} | |
− |
Latest revision as of 18:27, 3 September 2017
A mapping from the class of all one-place functions into itself, defined as follows. Let $\Phi_z$ be an enumeration operator. To this operator one naturally associates another operator $\Psi$, acting on one-place functions. More precisely, each function $\phi$ has a graph — the set of all pairs $(x,y)$ such that $\phi(x) = y$. Given a fixed coding method of pairs of natural numbers, this graph can be treated as a set $\tau(\phi)$ of natural numbers. If now $\Phi_z(\tau(\phi))$ is also the graph of some function $\psi$, then one puts $\Psi(\phi) = \psi$. Otherwise $\Psi(\phi)$ is not defined. Thus, to each enumeration operator $\Phi_z$ one associates a partial recursive operator $\Psi$.
If a partial recursive operator is defined on all functions, then it is called a recursive operator. A partial recursive operator that is defined on all everywhere-defined functions and that maps everywhere-defined functions to everywhere-defined functions is called a general recursive operator. Not every partial recursive operator can be extended to a recursive operator. Every general recursive operator is a recursive operator. The converse does not hold.
References
[1] | H. Rogers jr., "Theory of recursive functions and effective computability" , McGraw-Hill (1967) |
Comments
Cf. also Recursive function; Computable function.
Partial recursive operator. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Partial_recursive_operator&oldid=41806