Difference between revisions of "Polarization identity"
(more, cite Landsberg (2011)) |
m (typo) |
||
Line 17: | Line 17: | ||
defines a [[Hermitian form]]. | defines a [[Hermitian form]]. | ||
− | More generally there is an identity relating a homogenous [[form]] $F$ to a [[multilinear form]] $M$ | + | More generally there is an identity relating a homogenous [[form]] $F$ to a [[multilinear form]] $M$ over a field of characteristic zero |
$$ | $$ | ||
M(x_1,\ldots,x_n) = \frac{1}{k!} \sum_{ \emptyset \neq I \subseteq \{1,\ldots,n\} } (-1)^{n-|I|} F\left({\sum_{i \in I} x_i}\right) \ . | M(x_1,\ldots,x_n) = \frac{1}{k!} \sum_{ \emptyset \neq I \subseteq \{1,\ldots,n\} } (-1)^{n-|I|} F\left({\sum_{i \in I} x_i}\right) \ . |
Revision as of 07:26, 11 December 2016
An identity relating a quadratic form to a bilinear form.
If $q$ is a quadratic form on a vector space $V$ over a field of characteristic not equal to $2$, or more generally, a module over a ring in which $2$ is invertible, then defining $b$ by $$ b(x,y) = \frac12 ( q(x+y) - q(x) - q(y) ) $$ or $$ b(x,y) = \frac14 ( q(x+y) - q(x-y) ) $$ yields a symmetric bilinear form on $V$ such that $q(x) = b(x,x)$.
Similarly, if $q$ is a quadratic form over a complex vector space then $$ 4 b(x,y) = q(x+y) - q(x-y) + i (q(x + iy) - q(x-iy)) $$ defines a Hermitian form.
More generally there is an identity relating a homogenous form $F$ to a multilinear form $M$ over a field of characteristic zero $$ M(x_1,\ldots,x_n) = \frac{1}{k!} \sum_{ \emptyset \neq I \subseteq \{1,\ldots,n\} } (-1)^{n-|I|} F\left({\sum_{i \in I} x_i}\right) \ . $$
References
- Körner, T.W. A Companion to Analysis: A Second First and First Second Course in Analysis American Mathematical Soc. (2004) ISBN 0-8218-3447-9
- Landsberg, J.M. Tensors: Geometry and Applications American Mathematical Soc. (2011) ISBN 0-8218-6907-8
Polarization identity. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Polarization_identity&oldid=39959