Difference between revisions of "Cokernel"
(Importing text file) |
m (link) |
||
Line 9: | Line 9: | ||
Conversely, if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023190/c02319016.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023190/c02319017.png" /> is an isomorphism, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023190/c02319018.png" /> is a cokernel of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023190/c02319019.png" />. Thus, all cokernels of a morphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023190/c02319020.png" /> form a quotient object of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023190/c02319021.png" />, which is denoted by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023190/c02319022.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023190/c02319023.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023190/c02319024.png" /> is a normal epimorphism. The converse need not be true. The cokernel of the zero morphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023190/c02319025.png" /> is <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023190/c02319026.png" />. The cokernel of the unit morphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023190/c02319027.png" /> exists if and only if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023190/c02319028.png" /> contains a zero object. | Conversely, if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023190/c02319016.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023190/c02319017.png" /> is an isomorphism, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023190/c02319018.png" /> is a cokernel of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023190/c02319019.png" />. Thus, all cokernels of a morphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023190/c02319020.png" /> form a quotient object of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023190/c02319021.png" />, which is denoted by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023190/c02319022.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023190/c02319023.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023190/c02319024.png" /> is a normal epimorphism. The converse need not be true. The cokernel of the zero morphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023190/c02319025.png" /> is <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023190/c02319026.png" />. The cokernel of the unit morphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023190/c02319027.png" /> exists if and only if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023190/c02319028.png" /> contains a zero object. | ||
− | In a category <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023190/c02319029.png" /> with a zero object, a morphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023190/c02319030.png" /> has a cokernel if and only if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023190/c02319031.png" /> contains a co-Cartesian square with respect to the morphisms <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023190/c02319032.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023190/c02319033.png" />. This condition is satisfied, in particular, for any morphism of a right locally small category with a zero object and products. | + | In a category <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023190/c02319029.png" /> with a zero object, a morphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023190/c02319030.png" /> has a cokernel if and only if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023190/c02319031.png" /> contains a co-Cartesian square with respect to the morphisms <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023190/c02319032.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023190/c02319033.png" />. This condition is satisfied, in particular, for any morphism of a right [[locally small category]] with a zero object and products. |
Revision as of 16:12, 29 October 2016
of a morphism in a category
The concept dual to the concept of the kernel of a morphism in a category. In categories of vector spaces, groups, rings, etc. it describes a largest quotient object of an object that annihilates the image of a homomorphism .
Let be a category with null morphisms. A morphism is called a cokernel of a morphism if and if any morphism such that can be expressed in unique way as . A cokernel of a morphism is denoted by .
If and then for a unique isomorphism .
Conversely, if and is an isomorphism, then is a cokernel of . Thus, all cokernels of a morphism form a quotient object of , which is denoted by . If , then is a normal epimorphism. The converse need not be true. The cokernel of the zero morphism is . The cokernel of the unit morphism exists if and only if contains a zero object.
In a category with a zero object, a morphism has a cokernel if and only if contains a co-Cartesian square with respect to the morphisms and . This condition is satisfied, in particular, for any morphism of a right locally small category with a zero object and products.
Comments
The co-Cartesian square, or fibred sum or pushout, of two morphisms , is (if it exists) a commutative diagram
such that for any two morphisms , such that there exists a unique morphism for which , .
Cokernel. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Cokernel&oldid=39517