Namespaces
Variants
Actions

Difference between revisions of "Differentiable vector in a representation space"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
(Tex done)
 
Line 1: Line 1:
''<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031800/d0318001.png" /> of a representation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031800/d0318002.png" /> of a Lie group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031800/d0318003.png" />''
+
''$V$ of a representation $T$ of a Lie group $G$''
  
A vector <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031800/d0318004.png" /> for which the mapping
+
A vector $\xi \in V$ for which the mapping
 
+
$$
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031800/d0318005.png" /></td> </tr></table>
+
g \mapsto T(g) \xi
 
+
$$
is an infinitely-differentiable (of class <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031800/d0318006.png" />) vector function on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031800/d0318007.png" /> with values in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031800/d0318008.png" />. For the vector function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031800/d0318009.png" /> to be differentiable, a necessary condition (and, in the case of a locally convex quasi-complete space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031800/d03180010.png" />, also a sufficient condition) is that all scalar functions of the type <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031800/d03180011.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031800/d03180012.png" /> is a linear continuous functional on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031800/d03180013.png" />, be differentiable [[#References|[1]]]. The Gel'fand–Gårding theorem may be stated as follows: If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031800/d03180014.png" /> is a continuous representation of a [[Lie group|Lie group]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031800/d03180015.png" /> in a [[Banach space|Banach space]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031800/d03180016.png" />, then the set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031800/d03180017.png" /> of differentiable vectors is dense in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d031/d031800/d03180018.png" />. This theorem has been proved for one-parameter groups in [[#References|[2]]], and for the general case in [[#References|[3]]]. For a generalization of this result to a wide class of representations on locally convex spaces see [[#References|[4]]] and [[#References|[5]]].
+
is an infinitely-differentiable (of class $C^\infty$) vector function on $G$ with values in $V$. For the vector function $f : G \rightarrow V$ to be differentiable, a necessary condition (and, in the case of a locally convex quasi-complete space $V$, also a sufficient condition) is that all scalar functions of the type $F \circ f$, where $F$ is a linear continuous functional on $V$, be differentiable [[#References|[1]]]. The Gel'fand–Gårding theorem may be stated as follows: If $T$ is a continuous representation of a [[Lie group]] $G$ in a [[Banach space]] $V$, then the set $V^\infty$ of differentiable vectors is dense in $V$. This theorem has been proved for one-parameter groups in [[#References|[2]]], and for the general case in [[#References|[3]]]. For a generalization of this result to a wide class of representations on locally convex spaces see [[#References|[4]]] and [[#References|[5]]].
  
 
The presence of differentiable vectors in the representation space of a Lie group makes it possible to construct a representation of the corresponding Lie algebra, and thus connect the theory of representations of groups with the theory of representations of Lie algebras [[#References|[6]]].
 
The presence of differentiable vectors in the representation space of a Lie group makes it possible to construct a representation of the corresponding Lie algebra, and thus connect the theory of representations of groups with the theory of representations of Lie algebras [[#References|[6]]].
  
 
====References====
 
====References====
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  A. Grothendieck,  "Espaces vectoriels topologiques" , Univ. Sao Paulo  (1954)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  I.M. Gel'fand,  "On one-parameter groups of operators in a normed space"  ''Dokl. Akad. Nauk. SSSR'' , '''25'''  (1939)  pp. 713–718  (In Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  L. Gårding,  "Note on continuous representations of Lie groups"  ''Proc. Nat. Acad. Sci. USA'' , '''33'''  (1947)  pp. 331–332</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  R.T. Moore,  "Measurable, continuous and smooth vectors for semigroups and group representations" , Amer. Math. Soc.  (1968)</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top">  D.P. Zhelobenko,  "On infinitely differentiable vectors in representation theory"  ''Vestnik Moskov. Univ. Ser. Mat.'' , '''1'''  (1965)  pp. 3–10  (In Russian)  (English summary)</TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top">  A.A. Kirillov,  "Elements of the theory of representations" , Springer  (1976)  (Translated from Russian)</TD></TR></table>
+
<table>
 +
<TR><TD valign="top">[1]</TD> <TD valign="top">  A. Grothendieck,  "Espaces vectoriels topologiques" , Univ. Sao Paulo  (1954)</TD></TR>
 +
<TR><TD valign="top">[2]</TD> <TD valign="top">  I.M. Gel'fand,  "On one-parameter groups of operators in a normed space"  ''Dokl. Akad. Nauk. SSSR'' , '''25'''  (1939)  pp. 713–718  (In Russian)</TD></TR>
 +
<TR><TD valign="top">[3]</TD> <TD valign="top">  L. Gårding,  "Note on continuous representations of Lie groups"  ''Proc. Nat. Acad. Sci. USA'' , '''33'''  (1947)  pp. 331–332</TD></TR>
 +
<TR><TD valign="top">[4]</TD> <TD valign="top">  R.T. Moore,  "Measurable, continuous and smooth vectors for semigroups and group representations" , Amer. Math. Soc.  (1968)</TD></TR>
 +
<TR><TD valign="top">[5]</TD> <TD valign="top">  D.P. Zhelobenko,  "On infinitely differentiable vectors in representation theory"  ''Vestnik Moskov. Univ. Ser. Mat.'' , '''1'''  (1965)  pp. 3–10  (In Russian)  (English summary)</TD></TR>
 +
<TR><TD valign="top">[6]</TD> <TD valign="top">  A.A. Kirillov,  "Elements of the theory of representations" , Springer  (1976)  (Translated from Russian)</TD></TR>
 +
</table>
  
  
Line 18: Line 25:
  
 
====References====
 
====References====
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  G. Warner,  "Harmonic analysis on semi-simple Lie groups" , '''1''' , Springer  (1972)</TD></TR></table>
+
<table>
 +
<TR><TD valign="top">[a1]</TD> <TD valign="top">  G. Warner,  "Harmonic analysis on semi-simple Lie groups" , '''1''' , Springer  (1972)</TD></TR>
 +
</table>
 +
 
 +
{{TEX|done}}

Latest revision as of 18:39, 17 October 2016

$V$ of a representation $T$ of a Lie group $G$

A vector $\xi \in V$ for which the mapping $$ g \mapsto T(g) \xi $$ is an infinitely-differentiable (of class $C^\infty$) vector function on $G$ with values in $V$. For the vector function $f : G \rightarrow V$ to be differentiable, a necessary condition (and, in the case of a locally convex quasi-complete space $V$, also a sufficient condition) is that all scalar functions of the type $F \circ f$, where $F$ is a linear continuous functional on $V$, be differentiable [1]. The Gel'fand–Gårding theorem may be stated as follows: If $T$ is a continuous representation of a Lie group $G$ in a Banach space $V$, then the set $V^\infty$ of differentiable vectors is dense in $V$. This theorem has been proved for one-parameter groups in [2], and for the general case in [3]. For a generalization of this result to a wide class of representations on locally convex spaces see [4] and [5].

The presence of differentiable vectors in the representation space of a Lie group makes it possible to construct a representation of the corresponding Lie algebra, and thus connect the theory of representations of groups with the theory of representations of Lie algebras [6].

References

[1] A. Grothendieck, "Espaces vectoriels topologiques" , Univ. Sao Paulo (1954)
[2] I.M. Gel'fand, "On one-parameter groups of operators in a normed space" Dokl. Akad. Nauk. SSSR , 25 (1939) pp. 713–718 (In Russian)
[3] L. Gårding, "Note on continuous representations of Lie groups" Proc. Nat. Acad. Sci. USA , 33 (1947) pp. 331–332
[4] R.T. Moore, "Measurable, continuous and smooth vectors for semigroups and group representations" , Amer. Math. Soc. (1968)
[5] D.P. Zhelobenko, "On infinitely differentiable vectors in representation theory" Vestnik Moskov. Univ. Ser. Mat. , 1 (1965) pp. 3–10 (In Russian) (English summary)
[6] A.A. Kirillov, "Elements of the theory of representations" , Springer (1976) (Translated from Russian)


Comments

References

[a1] G. Warner, "Harmonic analysis on semi-simple Lie groups" , 1 , Springer (1972)
How to Cite This Entry:
Differentiable vector in a representation space. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Differentiable_vector_in_a_representation_space&oldid=39422
This article was adapted from an original article by A.A. Kirillov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article