Difference between revisions of "Denumerant"
(Importing text file) |
(Tex done) |
||
Line 1: | Line 1: | ||
− | The number | + | The number $D(n; a_1,\ldots,a_k)$ of partitions of an integer $n$ into parts equal to $a_1,\ldots,a_m$, i.e. the number of solutions in non-negative integers $x_1,\ldots,x_m$ of the equation |
− | + | $$ | |
− | + | n = a_1 x_1 + \cdots + a_m x_m \ . | |
− | + | $$ | |
The generating function of the denumerants is | The generating function of the denumerants is | ||
− | + | $$ | |
− | + | D(z; a_1,\ldots,a_m) = \sum_n D(n;a_1,\ldots,a_m) z^n = \frac{1}{\left({1-z^{a_1}}\right)\cdots\left({1-z^{a_m}}\right)} \ . | |
− | + | $$ | |
− | |||
The simplest method of computing a denumerant is by Euler's recurrence relation: | The simplest method of computing a denumerant is by Euler's recurrence relation: | ||
+ | $$ | ||
+ | D(n;1,\ldots,k) - D(n-k;1,\ldots,k) = D(n;1,\ldots,k-1) \ . | ||
+ | $$ | ||
− | + | Explicit formulas for certain denumerants may be obtained from the following theorem: If $A$ is the least common multiple of the numbers $a_1,\ldots,a_m$, then the denumerant | |
+ | $$ | ||
+ | D(An+b;a_1,\ldots,a_m) \ ;\ \ b=0,\ldots,A-1 | ||
+ | $$ | ||
+ | is a polynomial of degree $(m-1)$ with respect to $n$. | ||
− | + | ====References==== | |
− | + | <table> | |
− | <table | + | <TR><TD valign="top">[1]</TD> <TD valign="top"> J. Riordan, "An introduction to combinational analysis" , Wiley (1958)</TD></TR> |
− | + | </table> | |
− | |||
− | + | {{TEX|done}} | |
− |
Revision as of 19:42, 9 October 2016
The number $D(n; a_1,\ldots,a_k)$ of partitions of an integer $n$ into parts equal to $a_1,\ldots,a_m$, i.e. the number of solutions in non-negative integers $x_1,\ldots,x_m$ of the equation $$ n = a_1 x_1 + \cdots + a_m x_m \ . $$ The generating function of the denumerants is $$ D(z; a_1,\ldots,a_m) = \sum_n D(n;a_1,\ldots,a_m) z^n = \frac{1}{\left({1-z^{a_1}}\right)\cdots\left({1-z^{a_m}}\right)} \ . $$
The simplest method of computing a denumerant is by Euler's recurrence relation: $$ D(n;1,\ldots,k) - D(n-k;1,\ldots,k) = D(n;1,\ldots,k-1) \ . $$
Explicit formulas for certain denumerants may be obtained from the following theorem: If $A$ is the least common multiple of the numbers $a_1,\ldots,a_m$, then the denumerant $$ D(An+b;a_1,\ldots,a_m) \ ;\ \ b=0,\ldots,A-1 $$ is a polynomial of degree $(m-1)$ with respect to $n$.
References
[1] | J. Riordan, "An introduction to combinational analysis" , Wiley (1958) |
Denumerant. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Denumerant&oldid=39402