Namespaces
Variants
Actions

Difference between revisions of "Prime ideal"

From Encyclopedia of Mathematics
Jump to: navigation, search
(TeX)
(fix typography)
 
Line 5: Line 5:
  
 
====Comments====
 
====Comments====
This assumes that the empty set is an m system by default.
+
This assumes that the empty set is an $m$-system by default.
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  L.H. Rowen,  "Ring theory" , '''I''' , Acad. Press  (1988)  pp. 163</TD></TR></table>
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  L.H. Rowen,  "Ring theory" , '''I''' , Acad. Press  (1988)  pp. 163</TD></TR></table>

Latest revision as of 10:46, 18 September 2016

A two-sided ideal $I$ of a ring $A$ such that the inclusion $PQ\subseteq I$ for any two-sided ideals $P$ and $Q$ of $A$ implies that either $P\subseteq I$ or $Q\subseteq I$. An ideal $I$ of a ring $R$ is prime if and only if the set $R\setminus I$ is an $m$-system, i.e. for any $a,b\in R\setminus I$ there exists an $x\in R$ such that $axb\in R\setminus I$. An ideal $I$ of a ring $A$ is prime if and only if the quotient ring by it is a prime ring.


Comments

This assumes that the empty set is an $m$-system by default.

References

[a1] L.H. Rowen, "Ring theory" , I , Acad. Press (1988) pp. 163
How to Cite This Entry:
Prime ideal. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Prime_ideal&oldid=39153
This article was adapted from an original article by K.A. Zhevlakov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article