Difference between revisions of "Möbius series"
Ulf Rehmann (talk | contribs) m (moved Moebius series to Möbius series over redirect: accented title) |
(TeX done) |
||
| Line 1: | Line 1: | ||
| − | A | + | A class of functions of the form |
| − | + | $$ | |
| − | + | F_n(x) = \sum_{s=1}^\infty f(x^s) s^{-n} \ . | |
| − | + | $$ | |
These series were investigated by A. Möbius [[#References|[1]]], who found for a series (*) the inversion formula | These series were investigated by A. Möbius [[#References|[1]]], who found for a series (*) the inversion formula | ||
| + | $$ | ||
| + | f(x) = \sum_{s=1}^\infty \mu(s) F_n(x^s) s^{-n} \ , | ||
| + | $$ | ||
| + | where $\mu(s)$ is the [[Möbius function]]. Möbius considered also inversion formulas for finite sums running over the divisors of a natural number $n$: | ||
| + | $$ | ||
| + | F(n) = \sum_{d | n} f(d) \ ,\ \ \ f(n) = \sum_{d | n} \mu(d) F(n/d) \ . | ||
| + | $$ | ||
| − | + | Another inversion formula: If $P(n)$ is a [[totally multiplicative function]] for which $P(1) = 1$, and $f(x)$ is a function defined for all real $x > 0$, then | |
| − | + | $$ | |
| − | + | g(x) = \sum_{n \le x} P(n) f(x/n) | |
| − | + | $$ | |
| − | |||
| − | |||
| − | Another inversion formula: If | ||
| − | |||
| − | |||
| − | |||
implies | implies | ||
| − | + | $$ | |
| − | + | f(x) = \sum_{n \le x} \mu(n) P(n) g(x/n) \ . | |
| + | $$ | ||
====References==== | ====References==== | ||
| − | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> A. Möbius, "Ueber eine besondere Art der Umkehrung der Reihen" ''J. Reine Angew. Math.'' , '''9''' (1832) pp. 105–123</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> I.M. Vinogradov, "Elements of number theory" , Dover, reprint (1954) (Translated from Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> K. Prachar, "Primzahlverteilung" , Springer (1957)</TD></TR></table> | + | <table> |
| + | <TR><TD valign="top">[1]</TD> <TD valign="top"> A. Möbius, "Ueber eine besondere Art der Umkehrung der Reihen" ''J. Reine Angew. Math.'' , '''9''' (1832) pp. 105–123</TD></TR> | ||
| + | <TR><TD valign="top">[2]</TD> <TD valign="top"> I.M. Vinogradov, "Elements of number theory" , Dover, reprint (1954) (Translated from Russian)</TD></TR> | ||
| + | <TR><TD valign="top">[3]</TD> <TD valign="top"> K. Prachar, "Primzahlverteilung" , Springer (1957)</TD></TR> | ||
| + | </table> | ||
====Comments==== | ====Comments==== | ||
| − | All these (and many other) inversion formulas follow from the basic property of the Möbius function that it is the inverse of the unit arithmetic function | + | All these (and many other) inversion formulas follow from the basic property of the Möbius function that it is the inverse of the unit arithmetic function $E(n) \equiv 1$ under the convolution product, cf. (the editorial comments to) [[Möbius function]] and [[Multiplicative arithmetic function]]. |
| + | |||
| + | {{TEX|done}} | ||
Revision as of 06:52, 30 April 2016
A class of functions of the form $$ F_n(x) = \sum_{s=1}^\infty f(x^s) s^{-n} \ . $$ These series were investigated by A. Möbius [1], who found for a series (*) the inversion formula $$ f(x) = \sum_{s=1}^\infty \mu(s) F_n(x^s) s^{-n} \ , $$ where $\mu(s)$ is the Möbius function. Möbius considered also inversion formulas for finite sums running over the divisors of a natural number $n$: $$ F(n) = \sum_{d | n} f(d) \ ,\ \ \ f(n) = \sum_{d | n} \mu(d) F(n/d) \ . $$
Another inversion formula: If $P(n)$ is a totally multiplicative function for which $P(1) = 1$, and $f(x)$ is a function defined for all real $x > 0$, then $$ g(x) = \sum_{n \le x} P(n) f(x/n) $$ implies $$ f(x) = \sum_{n \le x} \mu(n) P(n) g(x/n) \ . $$
References
| [1] | A. Möbius, "Ueber eine besondere Art der Umkehrung der Reihen" J. Reine Angew. Math. , 9 (1832) pp. 105–123 |
| [2] | I.M. Vinogradov, "Elements of number theory" , Dover, reprint (1954) (Translated from Russian) |
| [3] | K. Prachar, "Primzahlverteilung" , Springer (1957) |
Comments
All these (and many other) inversion formulas follow from the basic property of the Möbius function that it is the inverse of the unit arithmetic function $E(n) \equiv 1$ under the convolution product, cf. (the editorial comments to) Möbius function and Multiplicative arithmetic function.
Möbius series. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=M%C3%B6bius_series&oldid=38735