Difference between revisions of "Mahler problem"
(TeX) |
(MSC 11J83) |
||
Line 1: | Line 1: | ||
− | {{TEX|done}} | + | {{TEX|done}}{{MSC|11J83}} |
− | A conjecture in the | + | |
+ | A conjecture in the [[Diophantine approximation, metric theory of|metric theory of Diophantine approximation]] stated by K. Mahler [[#References|[1]]]: For almost all (in the sense of [[Lebesgue measure]]) numbers $\omega\in\mathbf R$ the inequality | ||
$$|P(\omega)|<|H(P)|^{-n-\epsilon}$$ | $$|P(\omega)|<|H(P)|^{-n-\epsilon}$$ | ||
Line 13: | Line 14: | ||
====References==== | ====References==== | ||
− | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> K. Mahler, "Ueber das Mass der Menge aller $S$-Zahlen" ''Math. Ann.'' , '''106''' (1932) pp. 131–139</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> V.G. Sprindzhuk, "Mahler's problem in metric number theory" , Amer. Math. Soc. (1969) (Translated from Russian)</TD></TR></table> | + | <table> |
+ | <TR><TD valign="top">[1]</TD> <TD valign="top"> K. Mahler, "Ueber das Mass der Menge aller $S$-Zahlen" ''Math. Ann.'' , '''106''' (1932) pp. 131–139 {{ZBL|0003.24602}}</TD></TR> | ||
+ | <TR><TD valign="top">[2]</TD> <TD valign="top"> V.G. Sprindzhuk, "Mahler's problem in metric number theory" , Amer. Math. Soc. (1969) (Translated from Russian) {{ZBL|0181.05502}}</TD></TR> | ||
+ | </table> | ||
Line 21: | Line 25: | ||
====References==== | ====References==== | ||
− | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> V.G. Sprindzhuk, "A proof of Mahler's conjecture on the measure of the set of $S$ numbers" ''Izv. Akad. Nauk SSSR Ser. Mat.'' , '''29''' (1965) pp. 379–436</TD></TR></table> | + | <table> |
+ | <TR><TD valign="top">[a1]</TD> <TD valign="top"> V.G. Sprindzhuk, "A proof of Mahler's conjecture on the measure of the set of $S$ numbers" ''Izv. Akad. Nauk SSSR Ser. Mat.'' , '''29''' (1965) pp. 379–436 {{ZBL|0156.05405}}</TD></TR> | ||
+ | </table> |
Latest revision as of 20:25, 3 April 2016
2020 Mathematics Subject Classification: Primary: 11J83 [MSN][ZBL]
A conjecture in the metric theory of Diophantine approximation stated by K. Mahler [1]: For almost all (in the sense of Lebesgue measure) numbers $\omega\in\mathbf R$ the inequality
$$|P(\omega)|<|H(P)|^{-n-\epsilon}$$
has a finite number of solutions in polynomials $P\in\mathbf Z[x]$ of degree not exceeding $n$. Here $\epsilon>0$, $n$ is a natural number and $H(P)$ is the maximum modulus of the coefficients of $P$. An equivalent formulation is: For almost-all $\omega\in\mathbf R$ the inequality
$$\max(\|\omega q\|,\ldots,\|\omega^nq\|)<q^{-1/n-\epsilon}$$
has a finite number of solutions in integers $q$ ($\|\alpha\|$ is the distance from $\alpha$ to the nearest integer).
Mahler's problem was solved affirmatively in 1964 by V.G. Sprindzhuk [2]. He also proved similar results for complex and $p$-adic numbers, and also for power series over finite fields.
References
[1] | K. Mahler, "Ueber das Mass der Menge aller $S$-Zahlen" Math. Ann. , 106 (1932) pp. 131–139 Zbl 0003.24602 |
[2] | V.G. Sprindzhuk, "Mahler's problem in metric number theory" , Amer. Math. Soc. (1969) (Translated from Russian) Zbl 0181.05502 |
Comments
The original paper of Sprindzhuk is [a1].
References
[a1] | V.G. Sprindzhuk, "A proof of Mahler's conjecture on the measure of the set of $S$ numbers" Izv. Akad. Nauk SSSR Ser. Mat. , 29 (1965) pp. 379–436 Zbl 0156.05405 |
Mahler problem. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Mahler_problem&oldid=38541