Difference between revisions of "User:Richard Pinch/sandbox-3"
(Start article: Harmonic number) |
(→Harmonic number: more) |
||
Line 9: | Line 9: | ||
$$ | $$ | ||
H_n = \sum_{k=1}^n \frac{1}{k} \ . | H_n = \sum_{k=1}^n \frac{1}{k} \ . | ||
+ | $$ | ||
+ | A generalised harmonic number is a partial num of the zeta function | ||
+ | $$ | ||
+ | H_n^{(s)} = \sum_{k=1}^n \frac{1}{k^s} \ . | ||
$$ | $$ | ||
− | However, Pomerance has defined a harmonic number to be a natural number $n$ for which the [[harmonic mean]] of the divisors of $n$ is an integer; equivalently $\sigma(n)$ divides $n.d(n)$ where $\sigma(n)$ is the [[Sum of divisors|sum of the divisors]] of $n$ and $d(n)$ is the [[number of divisors]]: these are also called ''Øre numbers''. | + | However, Pomerance has defined a harmonic number to be a natural number $n$ for which the [[harmonic mean]] of the divisors of $n$ is an integer; equivalently $\sigma(n)$ divides $n.d(n)$ where $\sigma(n)$ is the [[Sum of divisors|sum of the divisors]] of $n$ and $d(n)$ is the [[number of divisors]]: these are also called ''Øre numbers''. The first seven such numbers are |
+ | $$ | ||
+ | 1,\ 6,\ 28,\ 140,\ 270,\ 496,\ 672 \ . | ||
+ | $$ | ||
+ | An even [[perfect number]] is a harmonic number. | ||
====References==== | ====References==== | ||
− | * Guy, | + | * Guy, Richard K. "Almost Perfect, Quasi-Perfect, Pseudoperfect, Harmonic, Weird, Multiperfect and Hyperperfect Numbers". Unsolved Problems in Number Theory (2nd ed.). New York: Springer-Verlag (1994). pp. 16, 45–53 |
− | * Sándor, József; Mitrinović, Dragoslav S.; Crstici, Borislav, edd | + | * Milovanović, Gradimir V., Rassias, Michael Th. (edd.) ''Analytic Number Theory, Approximation Theory, and Special Functions: In Honor of Hari M. Srivastava'' Springer (2014) ISBN 149390258X |
+ | * Sándor, József; Mitrinović, Dragoslav S.; Crstici, Borislav, edd. Handbook of number theory I. Dordrecht: Springer-Verlag (2006). ISBN 1-4020-4215-9. {{ZBL|1151.11300}} | ||
* Sándor, Jozsef; Crstici, Borislav, edd. Handbook of number theory II. Dordrecht: Kluwer Academic (2004). ISBN 1-4020-2546-7. {{ZBL|1079.11001}} | * Sándor, Jozsef; Crstici, Borislav, edd. Handbook of number theory II. Dordrecht: Kluwer Academic (2004). ISBN 1-4020-2546-7. {{ZBL|1079.11001}} | ||
+ | * Wagstaff, Samuel S. ''The Joy of Factoring'' Student mathematical library '''68''' American Mathematical Society (2013) ISBN 1470410486 |
Revision as of 18:30, 6 February 2016
Necklace algebra
The algebra over a ring $R$ with additive group $R^{\mathbf{N}} = \{ a = (a_1,a_2,\ldots) : a_i \in R \}$ and multiplication given by $$ (a * b)_n = \sum_{i,j : \mathrm{lcm}(i,j) = m} \mathrm{hcf}(i,j) a_i b_j \ . $$
Harmonic number
Commonly, a partial sum of the harmonic series $$ H_n = \sum_{k=1}^n \frac{1}{k} \ . $$ A generalised harmonic number is a partial num of the zeta function $$ H_n^{(s)} = \sum_{k=1}^n \frac{1}{k^s} \ . $$
However, Pomerance has defined a harmonic number to be a natural number $n$ for which the harmonic mean of the divisors of $n$ is an integer; equivalently $\sigma(n)$ divides $n.d(n)$ where $\sigma(n)$ is the sum of the divisors of $n$ and $d(n)$ is the number of divisors: these are also called Øre numbers. The first seven such numbers are $$ 1,\ 6,\ 28,\ 140,\ 270,\ 496,\ 672 \ . $$ An even perfect number is a harmonic number.
References
- Guy, Richard K. "Almost Perfect, Quasi-Perfect, Pseudoperfect, Harmonic, Weird, Multiperfect and Hyperperfect Numbers". Unsolved Problems in Number Theory (2nd ed.). New York: Springer-Verlag (1994). pp. 16, 45–53
- Milovanović, Gradimir V., Rassias, Michael Th. (edd.) Analytic Number Theory, Approximation Theory, and Special Functions: In Honor of Hari M. Srivastava Springer (2014) ISBN 149390258X
- Sándor, József; Mitrinović, Dragoslav S.; Crstici, Borislav, edd. Handbook of number theory I. Dordrecht: Springer-Verlag (2006). ISBN 1-4020-4215-9. Zbl 1151.11300
- Sándor, Jozsef; Crstici, Borislav, edd. Handbook of number theory II. Dordrecht: Kluwer Academic (2004). ISBN 1-4020-2546-7. Zbl 1079.11001
- Wagstaff, Samuel S. The Joy of Factoring Student mathematical library 68 American Mathematical Society (2013) ISBN 1470410486
Richard Pinch/sandbox-3. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Richard_Pinch/sandbox-3&oldid=37681