Difference between revisions of "Krawtchouk polynomials"
(Importing text file) |
(TeX done) |
||
Line 1: | Line 1: | ||
− | Polynomials orthogonal on the finite system of | + | Polynomials orthogonal on the finite system of $N+1$ integer points whose distribution function $\sigma(z)$ is a step function with discontinuities: |
+ | $$ | ||
+ | \sigma(x+) - \sigma(x-) = \binom{N}{x} p^x q^{N-x} \,,\ \ \ x=0,\ldots,N | ||
+ | $$ | ||
− | + | where $\binom{\cdot}{\cdot}$ is the [[Binomial coefficients|binomial coefficient]], $p,q > 0$ and $p+q = 1$. The Krawtchouk polynomials are given by the formulas | |
− | + | $$ | |
− | where | + | P_n(x) = \left[ \binom{N}{x} \right]^{-1/2} (pq)^{-n/2} \sum_{k=0}^n (-1)^{n-k} \binom{N-x}{n-k} \binom{x}{k} p^{n-k} q^k \ . |
− | + | $$ | |
− | |||
The concept is due to M.F. Krawtchouk [[#References|[1]]]. | The concept is due to M.F. Krawtchouk [[#References|[1]]]. | ||
====References==== | ====References==== | ||
− | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> M.F. Krawtchouk, "Sur une généralisation des polynômes d'Hermite" ''C.R. Acad. Sci. Paris'' , '''189''' (1929) pp. 620–622</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> G. Szegö, "Orthogonal polynomials" , Amer. Math. Soc. (1975)</TD></TR></table> | + | <table> |
+ | <TR><TD valign="top">[1]</TD> <TD valign="top"> M.F. Krawtchouk, "Sur une généralisation des polynômes d'Hermite" ''C.R. Acad. Sci. Paris'' , '''189''' (1929) pp. 620–622</TD></TR> | ||
+ | <TR><TD valign="top">[2]</TD> <TD valign="top"> G. Szegö, "Orthogonal polynomials" , Amer. Math. Soc. (1975)</TD></TR> | ||
+ | </table> | ||
====Comments==== | ====Comments==== | ||
− | Krawtchouk polynomials can be written as | + | Krawtchouk polynomials can be written as [[hypergeometric function]]s of type ${}_2F_1$. The unitarity relations for the matrix elements of the irreducible unitary representations of the group $SU(2)$ can be rewritten as the orthogonality relations for the Krawtchouk polynomials, cf. [[#References|[a2]]], [[#References|[a3]]]. These polynomials have also an interpretation as spherical functions on [[wreath product]]s of symmetric groups, cf. [[#References|[a4]]], where $q$-Krawtchouk polynomials are also treated. Coding theorists rather (but equivalently) relate them to Hamming schemes, where Krawtchouk polynomials are used for dealing with problems about perfect codes, cf. [[#References|[a1]]]. |
====References==== | ====References==== | ||
− | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> J.H. van Lint, "Introduction to coding theory" , Springer (1982)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> T.H. Koornwinder, "Krawtchouk polynomials, a unification of two different group theoretic interpretations" ''SIAM J. Math. Anal.'' , '''13''' (1982) pp. 1011–1023</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> V.B. Uvarov, "Special functions of mathematical physics" , Birkhäuser (1988) (Translated from Russian)</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> D. Stanton, "Orthogonal polynomials and Chevalley groups" R.A. Askey (ed.) T.H. Koornwinder (ed.) W. Schempp (ed.) , ''Special functions: group theoretical aspects and applications'' , Reidel (1984) pp. 87–128</TD></TR></table> | + | <table> |
+ | <TR><TD valign="top">[a1]</TD> <TD valign="top"> J.H. van Lint, "Introduction to coding theory" , Springer (1982)</TD></TR> | ||
+ | <TR><TD valign="top">[a2]</TD> <TD valign="top"> T.H. Koornwinder, "Krawtchouk polynomials, a unification of two different group theoretic interpretations" ''SIAM J. Math. Anal.'' , '''13''' (1982) pp. 1011–1023</TD></TR> | ||
+ | <TR><TD valign="top">[a3]</TD> <TD valign="top"> V.B. Uvarov, "Special functions of mathematical physics" , Birkhäuser (1988) (Translated from Russian)</TD></TR> | ||
+ | <TR><TD valign="top">[a4]</TD> <TD valign="top"> D. Stanton, "Orthogonal polynomials and Chevalley groups" R.A. Askey (ed.) T.H. Koornwinder (ed.) W. Schempp (ed.) , ''Special functions: group theoretical aspects and applications'' , Reidel (1984) pp. 87–128</TD></TR> | ||
+ | </table> | ||
+ | |||
+ | {{TEX|done}} |
Latest revision as of 20:05, 4 February 2016
Polynomials orthogonal on the finite system of $N+1$ integer points whose distribution function $\sigma(z)$ is a step function with discontinuities: $$ \sigma(x+) - \sigma(x-) = \binom{N}{x} p^x q^{N-x} \,,\ \ \ x=0,\ldots,N $$
where $\binom{\cdot}{\cdot}$ is the binomial coefficient, $p,q > 0$ and $p+q = 1$. The Krawtchouk polynomials are given by the formulas $$ P_n(x) = \left[ \binom{N}{x} \right]^{-1/2} (pq)^{-n/2} \sum_{k=0}^n (-1)^{n-k} \binom{N-x}{n-k} \binom{x}{k} p^{n-k} q^k \ . $$
The concept is due to M.F. Krawtchouk [1].
References
[1] | M.F. Krawtchouk, "Sur une généralisation des polynômes d'Hermite" C.R. Acad. Sci. Paris , 189 (1929) pp. 620–622 |
[2] | G. Szegö, "Orthogonal polynomials" , Amer. Math. Soc. (1975) |
Comments
Krawtchouk polynomials can be written as hypergeometric functions of type ${}_2F_1$. The unitarity relations for the matrix elements of the irreducible unitary representations of the group $SU(2)$ can be rewritten as the orthogonality relations for the Krawtchouk polynomials, cf. [a2], [a3]. These polynomials have also an interpretation as spherical functions on wreath products of symmetric groups, cf. [a4], where $q$-Krawtchouk polynomials are also treated. Coding theorists rather (but equivalently) relate them to Hamming schemes, where Krawtchouk polynomials are used for dealing with problems about perfect codes, cf. [a1].
References
[a1] | J.H. van Lint, "Introduction to coding theory" , Springer (1982) |
[a2] | T.H. Koornwinder, "Krawtchouk polynomials, a unification of two different group theoretic interpretations" SIAM J. Math. Anal. , 13 (1982) pp. 1011–1023 |
[a3] | V.B. Uvarov, "Special functions of mathematical physics" , Birkhäuser (1988) (Translated from Russian) |
[a4] | D. Stanton, "Orthogonal polynomials and Chevalley groups" R.A. Askey (ed.) T.H. Koornwinder (ed.) W. Schempp (ed.) , Special functions: group theoretical aspects and applications , Reidel (1984) pp. 87–128 |
Krawtchouk polynomials. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Krawtchouk_polynomials&oldid=37654