Namespaces
Variants
Actions

Difference between revisions of "Borsuk fixed-point theorem"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
(TeX done)
 
Line 1: Line 1:
Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110770/b1107701.png" /> be an open bounded symmetric subset of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110770/b1107702.png" /> containing the origin. Here, symmetric means that if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110770/b1107703.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110770/b1107704.png" /> also. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110770/b1107705.png" /> be a continuous mapping and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110770/b1107706.png" />. Then there is an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110770/b1107707.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110770/b1107708.png" />.
+
Let $B$ be an open bounded symmetric subset of $\mathbf{R}^n$ containing the origin. Here, symmetric means that if $x \in B$, then $-x \in B$ also. Let $\phi : \partial B \rightarrow \mathbf{R}^m$ be a continuous mapping and let $m < n$. Then there is an $x \in \partial B$ such that $\phi(x) = \phi(-x)$.
  
The original version (K. Borsuk, 1933) was for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110770/b1107709.png" />, the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110770/b11077010.png" />-dimensional ball in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110770/b11077011.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110770/b11077012.png" />. The result is also known as one of the Borsuk antipodal theorems (see [[Antipodes|Antipodes]]) or as the Borsuk–Ulam theorem.
+
The original version (K. Borsuk, 1933) was for $B = D^n$, the $n$-dimensional ball in $\mathbf{R}^n$, $n = m$. The result is also known as one of the Borsuk antipodal theorems (see [[Antipodes]]) or as the Borsuk–Ulam theorem.
  
The central lemma for the Borsuk–Ulam theorem is that an odd mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110770/b11077013.png" /> has odd degree (see [[Degree of a mapping|Degree of a mapping]]). A mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110770/b11077014.png" /> is called odd if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/b/b110/b110770/b11077015.png" />. Many people call this odd-degree result itself the Borsuk–Ulam theorem. For a generalization, the so-called Borsuk odd mapping theorem, see [[#References|[a1]]], p. 42.
+
The central lemma for the Borsuk–Ulam theorem is that an odd mapping $f : S^n \rightarrow S^n$ has odd degree (see [[Degree of a mapping]]). A mapping $f : S^n \rightarrow S^n$ is called odd if $f(-x) = - f(x)$. Many people call this odd-degree result itself the Borsuk–Ulam theorem. For a generalization, the so-called Borsuk odd mapping theorem, see [[#References|[a1]]], p. 42.
  
 
====References====
 
====References====
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  N.G. Lloyd,  "Degree theory" , Cambridge Univ. Press  (1978)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  E.H. Spanier,  "Algebraic topology" , McGraw-Hill  (1966)  pp. 266</TD></TR></table>
+
<table>
 +
<TR><TD valign="top">[a1]</TD> <TD valign="top">  N.G. Lloyd,  "Degree theory" , Cambridge Univ. Press  (1978)</TD></TR>
 +
<TR><TD valign="top">[a2]</TD> <TD valign="top">  E.H. Spanier,  "Algebraic topology" , McGraw-Hill  (1966)  pp. 266</TD></TR>
 +
</table>
 +
 
 +
{{TEX|done}}

Latest revision as of 20:43, 19 January 2016

Let $B$ be an open bounded symmetric subset of $\mathbf{R}^n$ containing the origin. Here, symmetric means that if $x \in B$, then $-x \in B$ also. Let $\phi : \partial B \rightarrow \mathbf{R}^m$ be a continuous mapping and let $m < n$. Then there is an $x \in \partial B$ such that $\phi(x) = \phi(-x)$.

The original version (K. Borsuk, 1933) was for $B = D^n$, the $n$-dimensional ball in $\mathbf{R}^n$, $n = m$. The result is also known as one of the Borsuk antipodal theorems (see Antipodes) or as the Borsuk–Ulam theorem.

The central lemma for the Borsuk–Ulam theorem is that an odd mapping $f : S^n \rightarrow S^n$ has odd degree (see Degree of a mapping). A mapping $f : S^n \rightarrow S^n$ is called odd if $f(-x) = - f(x)$. Many people call this odd-degree result itself the Borsuk–Ulam theorem. For a generalization, the so-called Borsuk odd mapping theorem, see [a1], p. 42.

References

[a1] N.G. Lloyd, "Degree theory" , Cambridge Univ. Press (1978)
[a2] E.H. Spanier, "Algebraic topology" , McGraw-Hill (1966) pp. 266
How to Cite This Entry:
Borsuk fixed-point theorem. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Borsuk_fixed-point_theorem&oldid=37597
This article was adapted from an original article by M. Hazewinkel (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article