Difference between revisions of "Multiple"
From Encyclopedia of Mathematics
(TeX done) |
m (link) |
||
Line 1: | Line 1: | ||
''of a natural number $n$'' | ''of a natural number $n$'' | ||
− | A [[natural number]] that is divisible by $n$ without remainder (cf. [[Division]]). A number $n$ divisible by each of the numbers $a,b,\ldots,m$ is called a ''common multiple'' of these numbers. Among all common multiples of two or more numbers, one (distinct from zero) is the smallest (the ''lowest common multiple'') and the others are then multiples of the lowest common multiple. If the [[greatest common divisor]] $d$ of two numbers $a$ and $b$ is known, the lowest common multiple $m$ is found from the formula $m = ab/d$. | + | A [[natural number]] that is divisible by $n$ without remainder (cf. [[Division]]). A number $n$ divisible by each of the numbers $a,b,\ldots,m$ is called a ''common multiple'' of these numbers. Among all common multiples of two or more numbers, one (distinct from zero) is the smallest (the ''lowest'' or ''[[least common multiple]]'') and the others are then multiples of the lowest common multiple. If the [[greatest common divisor]] $d$ of two numbers $a$ and $b$ is known, the lowest common multiple $m$ is found from the formula $m = ab/d$. |
====Comments==== | ====Comments==== |
Revision as of 18:21, 16 January 2016
of a natural number $n$
A natural number that is divisible by $n$ without remainder (cf. Division). A number $n$ divisible by each of the numbers $a,b,\ldots,m$ is called a common multiple of these numbers. Among all common multiples of two or more numbers, one (distinct from zero) is the smallest (the lowest or least common multiple) and the others are then multiples of the lowest common multiple. If the greatest common divisor $d$ of two numbers $a$ and $b$ is known, the lowest common multiple $m$ is found from the formula $m = ab/d$.
Comments
References
[a1] | I.M. Vinogradov, "Elements of number theory" , Dover, reprint (1954) (Translated from Russian 5th ed. 1949) Zbl 0057.28201 |
How to Cite This Entry:
Multiple. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Multiple&oldid=37548
Multiple. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Multiple&oldid=37548