Difference between revisions of "Discrete space"
(moving text from Discrete topology) |
(better) |
||
Line 1: | Line 1: | ||
In the narrow sense, a space with the [[discrete topology]]. | In the narrow sense, a space with the [[discrete topology]]. | ||
− | In the broad sense, sometimes termed ''Alexandrov-discrete'', a [[topological space]] in which intersections of arbitrary families of open sets are open. In the case of $T_1$-spaces, both definitions coincide. In this sense, the theory of discrete spaces is equivalent to the theory of partially ordered sets. | + | In the broad sense, sometimes termed ''Alexandrov-discrete'', a [[topological space]] in which intersections of arbitrary families of open sets are open. In the case of $T_1$-spaces, both definitions coincide. In this sense, the theory of discrete spaces is equivalent to the theory of partially ordered sets. If $(P,{\sqsubseteq}$ is a pre-ordered set (cf. [[Pre-order]]), then define $O_x = \{ y \in P : y \sqsubseteq x \}$ for $x \in P$. With the topology generated by the sets $O_x$, $P$ becomes a discrete space. |
− | + | If $X$ is a discrete space, put $O_x = \cap \{ O : x \in O, \ O \,\text{open} \}$ for $x \in X$. Then $y \sqsubseteq x$ if and only if $y \in O_x$, defines a pre-order on $X$. | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | + | These constructions are mutually inverse. Moreover, discrete $T_0$-spaces correspond to partial orders and narrow-sense discrete spaces correspond to [[discrete order]]s. | |
− | + | This simple idea and variations thereof have proven to be extremely fruitful, see, e.g., [[#References|[2]]]. | |
− | |||
− | This simple idea and variations thereof have proven to be extremely fruitful, see, e.g., [[#References|[ | ||
====References==== | ====References==== | ||
<table> | <table> | ||
− | <TR><TD valign="top">[ | + | <TR><TD valign="top">[1]</TD> <TD valign="top"> P.S. Aleksandrov, "Diskrete Räume" ''Mat. Sb.'' , '''2''' (1937) pp. 501–520 {{ZBL|0018.09105}}</TD></TR> |
+ | <TR><TD valign="top">[2]</TD> <TD valign="top"> G. Gierz, K.H. Hofmann, K. Keimel, J.D. Lawson, M.V. Mislove, D.S. Scott, "A compendium of continuous lattices" , Springer (1980)</TD></TR> | ||
</table> | </table> | ||
Revision as of 19:47, 1 January 2016
In the narrow sense, a space with the discrete topology.
In the broad sense, sometimes termed Alexandrov-discrete, a topological space in which intersections of arbitrary families of open sets are open. In the case of $T_1$-spaces, both definitions coincide. In this sense, the theory of discrete spaces is equivalent to the theory of partially ordered sets. If $(P,{\sqsubseteq}$ is a pre-ordered set (cf. Pre-order), then define $O_x = \{ y \in P : y \sqsubseteq x \}$ for $x \in P$. With the topology generated by the sets $O_x$, $P$ becomes a discrete space.
If $X$ is a discrete space, put $O_x = \cap \{ O : x \in O, \ O \,\text{open} \}$ for $x \in X$. Then $y \sqsubseteq x$ if and only if $y \in O_x$, defines a pre-order on $X$.
These constructions are mutually inverse. Moreover, discrete $T_0$-spaces correspond to partial orders and narrow-sense discrete spaces correspond to discrete orders.
This simple idea and variations thereof have proven to be extremely fruitful, see, e.g., [2].
References
[1] | P.S. Aleksandrov, "Diskrete Räume" Mat. Sb. , 2 (1937) pp. 501–520 Zbl 0018.09105 |
[2] | G. Gierz, K.H. Hofmann, K. Keimel, J.D. Lawson, M.V. Mislove, D.S. Scott, "A compendium of continuous lattices" , Springer (1980) |
Discrete space. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Discrete_space&oldid=37252