Difference between revisions of "Transitive relation"
(equivalent characterisation, cite Cohn (1981)) |
m (typo) |
||
Line 9: | Line 9: | ||
<TR><TD valign="top">[a1]</TD> <TD valign="top"> R. Fraïssé, ''Theory of Relations'', Studies in Logic and the Foundations of Mathematics, Elsevier (2011) ISBN 0080960413</TD></TR> | <TR><TD valign="top">[a1]</TD> <TD valign="top"> R. Fraïssé, ''Theory of Relations'', Studies in Logic and the Foundations of Mathematics, Elsevier (2011) ISBN 0080960413</TD></TR> | ||
<TR><TD valign="top">[a2]</TD> <TD valign="top"> P. R. Halmos, ''Naive Set Theory'', Springer (1960) ISBN 0-387-90092-6</TD></TR> | <TR><TD valign="top">[a2]</TD> <TD valign="top"> P. R. Halmos, ''Naive Set Theory'', Springer (1960) ISBN 0-387-90092-6</TD></TR> | ||
− | <TR><TD valign="top">[ | + | <TR><TD valign="top">[a3]</TD> <TD valign="top"> P.M. Cohn, "Universal algebra", Reidel (1981) ISBN 90-277-1213-1 {{MR|0620952}} {{ZBL|0461.08001}}</TD></TR> |
</table> | </table> |
Revision as of 08:21, 29 December 2015
2020 Mathematics Subject Classification: Primary: 03-XX [MSN][ZBL]
One of the most important properties of a binary relation. A relation $R$ on a set $A$ is called transitive if, for any $a,b,c\in A$, the conditions $aRb$ and $bRc$ imply $aRc$: equivalently if the composition $R \circ R \subseteq R$. Equivalence relations and orderings are examples of transitive relations. The universal relation, $a R b$ for all $a,b \in A$, the equality relation, $a R b$ for $a=b \in A$ and the empty (nil) relation are transitive.
The intersection of transitive relations on a set is again transitive. The transitive closure $R^*$ of a relation $R$ is the smallest transitive relation containing $R$. It can be described as $a R^* b$ if there exists a finite chain $a = a_0, a_1, \ldots, a_n = b$ such that for each $i=1,\ldots,n$ we have $a_{i-1} R a_i$.
References
[a1] | R. Fraïssé, Theory of Relations, Studies in Logic and the Foundations of Mathematics, Elsevier (2011) ISBN 0080960413 |
[a2] | P. R. Halmos, Naive Set Theory, Springer (1960) ISBN 0-387-90092-6 |
[a3] | P.M. Cohn, "Universal algebra", Reidel (1981) ISBN 90-277-1213-1 MR0620952 Zbl 0461.08001 |
Transitive relation. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Transitive_relation&oldid=37122