Namespaces
Variants
Actions

Difference between revisions of "Inverse matrix"

From Encyclopedia of Mathematics
Jump to: navigation, search
(TeX)
(MSC 15A09)
 
Line 1: Line 1:
{{TEX|done}}
+
{{TEX|done}}{{MSC|15A09}}
 +
 
 
''of a square matrix $A$ over a field $k$''
 
''of a square matrix $A$ over a field $k$''
  
The matrix $A^{-1}$ for which $AA^{-1}=A^{-1}A=E$, where $E$ is the identity matrix. Invertibility of a matrix is equivalent to its being non-singular (see [[Non-singular matrix|Non-singular matrix]]). For the matrix $A=\|\alpha_{ij}\|$, the inverse matrix is $A^{-1}=\|\gamma_{ij}\|$ where
+
The matrix $A^{-1}$ for which $AA^{-1}=A^{-1}A=E$, where $E$ is the identity matrix. Invertibility of a matrix is equivalent to its being non-singular (see [[Non-singular matrix]]). For the matrix $A=\|\alpha_{ij}\|$, the inverse matrix is $A^{-1}=\|\gamma_{ij}\|$ where
  
 
$$\gamma_{ij}=\frac{A_{ji}}{\det A},$$
 
$$\gamma_{ij}=\frac{A_{ji}}{\det A},$$
  
where $A_{ij}$ is the [[Cofactor|cofactor]] of the element $\alpha_{ij}$. For methods of computing the inverse of a matrix see [[Inversion of a matrix|Inversion of a matrix]].
+
where $A_{ij}$ is the [[cofactor]] of the element $\alpha_{ij}$. For methods of computing the inverse of a matrix see [[Inversion of a matrix]].

Latest revision as of 18:09, 14 December 2015

2020 Mathematics Subject Classification: Primary: 15A09 [MSN][ZBL]

of a square matrix $A$ over a field $k$

The matrix $A^{-1}$ for which $AA^{-1}=A^{-1}A=E$, where $E$ is the identity matrix. Invertibility of a matrix is equivalent to its being non-singular (see Non-singular matrix). For the matrix $A=\|\alpha_{ij}\|$, the inverse matrix is $A^{-1}=\|\gamma_{ij}\|$ where

$$\gamma_{ij}=\frac{A_{ji}}{\det A},$$

where $A_{ij}$ is the cofactor of the element $\alpha_{ij}$. For methods of computing the inverse of a matrix see Inversion of a matrix.

How to Cite This Entry:
Inverse matrix. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Inverse_matrix&oldid=36931