Namespaces
Variants
Actions

Difference between revisions of "Separable space"

From Encyclopedia of Mathematics
Jump to: navigation, search
(TeX)
m (links)
Line 1: Line 1:
 
{{TEX|done}}
 
{{TEX|done}}
A topological space containing a countable everywhere-dense set.
 
 
  
 +
A [[topological space]] containing a [[Countable set|countable]] [[everywhere-dense set]].
  
 
====Comments====
 
====Comments====
Thus, a space $X$ is separable if and only if its density $d(X)\leq\aleph_0$; cf. [[Cardinal characteristic|Cardinal characteristic]].
+
Thus, a space $X$ is separable if and only if its [[Density (of a topological space)|density]] $d(X)\leq\aleph_0$; cf. [[Cardinal characteristic]].
  
A metrizable space is separable if and only if it satisfies the [[Second axiom of countability|second axiom of countability]].
+
A [[metrizable space]] is separable if and only if it satisfies the [[Second axiom of countability]].
  
 
====References====
 
====References====
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  A.V. Arkhangel'skii,  V.I. Ponomarev,  "Fundamentals of general topology: problems and exercises" , Reidel  (1984)  pp. 43ff  (Translated from Russian)</TD></TR></table>
+
<table>
 +
<TR><TD valign="top">[1]</TD> <TD valign="top">  A.V. Arkhangel'skii,  V.I. Ponomarev,  "Fundamentals of general topology: problems and exercises" , Reidel  (1984)  pp. 43ff  (Translated from Russian)</TD></TR></table>

Revision as of 19:31, 12 December 2015


A topological space containing a countable everywhere-dense set.

Comments

Thus, a space $X$ is separable if and only if its density $d(X)\leq\aleph_0$; cf. Cardinal characteristic.

A metrizable space is separable if and only if it satisfies the Second axiom of countability.

References

[1] A.V. Arkhangel'skii, V.I. Ponomarev, "Fundamentals of general topology: problems and exercises" , Reidel (1984) pp. 43ff (Translated from Russian)
How to Cite This Entry:
Separable space. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Separable_space&oldid=36897
This article was adapted from an original article by M.I. Voitsekhovskii (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article