Namespaces
Variants
Actions

Difference between revisions of "Formal power series"

From Encyclopedia of Mathematics
Jump to: navigation, search
(TeX partially done)
(→‎Comments: TeX partially done)
Line 52: Line 52:
 
Power series in non-commuting variables are becoming rapidly more important and find applications in combinatorics (enumerative graph theory), computer science (automata) and system and control theory (representation of the input-output behaviour of non-linear systems, especially bilinear systems); cf. the collection [[#References|[a1]]] for a first idea.
 
Power series in non-commuting variables are becoming rapidly more important and find applications in combinatorics (enumerative graph theory), computer science (automata) and system and control theory (representation of the input-output behaviour of non-linear systems, especially bilinear systems); cf. the collection [[#References|[a1]]] for a first idea.
  
Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040870/f04087068.png" /> be a ring containing <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040870/f04087069.png" /> (or provided with a ring homomorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040870/f04087070.png" />), let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040870/f04087071.png" /> be an ideal in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040870/f04087072.png" /> and suppose that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040870/f04087073.png" /> is complete in the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040870/f04087074.png" />-adic topology on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040870/f04087075.png" />. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040870/f04087076.png" /> be elements of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040870/f04087077.png" />. Then an expression
+
Let $A'$ be a ring containing $A$ (or provided with a ring homomorphism $\phi : A \rightarrow A'$), let $\mathfrak{a}'$ be an ideal in $A'$ and suppose that $A'$ is complete in the $\mathfrak{a}'$-adic topology on $A'$. Let $x_1,\ldots,x_n$ be elements of $\mathfrak{a}'$. Then an expression
 +
$$
 +
\sum_{ i_1,\ldots,i_n = 0 }^\infty c_{ i_1,\ldots,i_n } x_1^{i_1}\cdots x_n^{i_n}
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040870/f04087078.png" /></td> </tr></table>
+
where the $i_j$ range over $\mathbf{N} \cup \{0\} = \{0,1,2,\ldots \}$, $c_{ i_1,\ldots,i_n } \in A$, has a well-defined meaning in $A'$ (as the unique limit of the finite sums
 +
$$
 +
\sum_{ i_1,\ldots,i_n = 0 }^m c_{ i_1,\ldots,i_n } x_1^{i_1}\cdots x_n^{i_n}
 +
$$
  
where the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040870/f04087079.png" /> range over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040870/f04087080.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040870/f04087081.png" />, has a well-defined meaning in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040870/f04087082.png" /> (as the unique limit of the finite sums
 
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040870/f04087083.png" /></td> </tr></table>
+
as $m \rightarrow \infty$). Such an expression is also called a formal power series over $A$. Mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040870/f04087086.png" /> to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040870/f04087087.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040870/f04087088.png" />, defines a (continuous) homomorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040870/f04087089.png" />. If this homomorphism is injective, the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040870/f04087090.png" /> are said to be analytically independent over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040870/f04087091.png" />.
 
 
as <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040870/f04087084.png" />). Such an expression is also called a formal power series over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040870/f04087085.png" />. Mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040870/f04087086.png" /> to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040870/f04087087.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040870/f04087088.png" />, defines a (continuous) homomorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040870/f04087089.png" />. If this homomorphism is injective, the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040870/f04087090.png" /> are said to be analytically independent over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040870/f04087091.png" />.
 
  
 
Let now <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040870/f04087092.png" /> be a field with a multiplicative norm on it (i.e. <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040870/f04087093.png" />), e.g. <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040870/f04087094.png" /> with the usual norm or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040870/f04087095.png" />, the rational field, with the norm <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040870/f04087096.png" /> if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040870/f04087097.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040870/f04087098.png" /> is the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040870/f040870101.png" />-adic valuation on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040870/f040870102.png" /> (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040870/f040870103.png" /> for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040870/f040870104.png" /> is the exponent of the largest power of the prime number <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040870/f040870105.png" /> that divides <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040870/f040870106.png" />; <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040870/f040870107.png" />). Now consider all formal power series <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040870/f040870108.png" /> over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040870/f040870109.png" /> such that there exists positive numbers <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040870/f040870110.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040870/f040870111.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040870/f040870112.png" />. These form a subring of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040870/f040870113.png" />, called the ring of convergent power series over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040870/f040870114.png" /> and denoted by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040870/f040870115.png" /> (or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040870/f040870116.png" />, but the latter notation also occurs for the ring of power series in non-commuting variables over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040870/f040870117.png" />). The Weierstrass preparation theorem also holds in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040870/f040870118.png" />.
 
Let now <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040870/f04087092.png" /> be a field with a multiplicative norm on it (i.e. <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040870/f04087093.png" />), e.g. <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040870/f04087094.png" /> with the usual norm or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040870/f04087095.png" />, the rational field, with the norm <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040870/f04087096.png" /> if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040870/f04087097.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040870/f04087098.png" /> is the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040870/f040870101.png" />-adic valuation on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040870/f040870102.png" /> (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040870/f040870103.png" /> for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040870/f040870104.png" /> is the exponent of the largest power of the prime number <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040870/f040870105.png" /> that divides <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040870/f040870106.png" />; <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040870/f040870107.png" />). Now consider all formal power series <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040870/f040870108.png" /> over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040870/f040870109.png" /> such that there exists positive numbers <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040870/f040870110.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040870/f040870111.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040870/f040870112.png" />. These form a subring of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040870/f040870113.png" />, called the ring of convergent power series over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040870/f040870114.png" /> and denoted by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040870/f040870115.png" /> (or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040870/f040870116.png" />, but the latter notation also occurs for the ring of power series in non-commuting variables over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040870/f040870117.png" />). The Weierstrass preparation theorem also holds in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/f/f040/f040870/f040870118.png" />.

Revision as of 19:33, 7 December 2015

over a ring $A$ in commuting variables $T_1,\ldots,T_N$

An algebraic expression of the form $$ F = \sum_{k=0}^\infty F_k $$

where $F_k$ is a form of degree $k$ in $T_1,\ldots,T_N$ with coefficients in $A$. The minimal value of $k$ for which $F_k \ne 0$ is called the order of the series $F$, and the form $F_k$ is called the initial form of the series.

If $$ F = \sum_{k=0}^\infty F_k \ \ \text{and}\ \ G = \sum_{k=0}^\infty G_k $$ are two formal power series, then, by definition, $$ F + G = \sum_{k=0}^\infty F_k + G_k $$ and $$ F \cdot G = \sum_{k=0}^\infty H_k $$ where $$ H_k = \sum_{j=0}^k F_j G_{k-j} \ . $$

The set $A[[T_1,\ldots,T_N]]$ of all formal power series forms a ring under these operations.

A polynomial $F = \sum_{k=0}^n F_k$, where $F_k$ is a form of degree $k$, is identified with the formal power series $C = \sum_{k=0}^\infty C_k$ , where $C_k = F_k$ for $k \le n$ and $C_k = 0$ for $k > n$. This defines an imbedding $i$ of the polynomial ring $A[T_1,\ldots,T_N]$ into $A[[T_1,\ldots,T_N]]$. There is a topology defined on $A[[T_1,\ldots,T_N]]$ for which the ideals $$ I_n = \{ F = \sum_{k=0}^\infty F_k \ :\ F_k = 0 \ \text{for}\ k \le n \} $$ form a fundamental system of neighbourhoods of zero. This topology is separable, the ring $A[[T_1,\ldots,T_N]]$ is complete relative to it, and the image of $A[T_1,\ldots,T_N]$ under the imbedding $i$ is everywhere dense in $A[[T_1,\ldots,T_N]]$. Relative to this topology, a power series $F = \sum_{k=0}^\infty F_k$ is the limit of its partial sums $F = \sum_{k=0}^n F_k$.

Suppose that $A$ is a commutative ring with an identity. Then so is $A[[T_1,\ldots,T_N]]$. If $A$ is an integral domain, then so is $A[[T_1,\ldots,T_N]]$. A formal power series $F = \sum_{k=0}^\infty F_k$ is invertible in $A[[T_1,\ldots,T_N]]$ if and only if $F_0$ is invertible in $A$. If $A$ is Noetherian, then so is $A[[T_1,\ldots,T_N]]$. If $A$ is a local ring with maximal ideal $\mathfrak{m}$, then $A[[T_1,\ldots,T_N]]$ is a local ring with maximal ideal $\left\langle \mathfrak{m}, T_1,\ldots,T_N \right\rangle$ .

If a local ring $A$ is separable and complete in the $\mathfrak{m}$-adic topology, then the Weierstrass preparation theorem is true in $A[[T_1,\ldots,T_N]]$. Let $F$ be a formal power series such that for some $k$ the form $F_k$ contains a term $a T^k$, where $a \notin \mathfrak{m}$, and let $k$ be the minimal index with this property. Then $F = UP$, where $U$ is an invertible formal power series and $P$ is a polynomial of the form $T^k + a_{k-1}T^{k-1} + \cdots + a_0$, where the coefficients $a_i$ belong to the maximal ideal of $A[[T_1,\ldots,T_N]]$. The elements $U$ and $P$ are uniquely determined by $F$.

The ring of formal power series over a field or a discretely-normed ring is factorial.

Rings of formal power series in non-commuting variables have also been studied.

References

[1] N. Bourbaki, "Elements of mathematics. Commutative algebra" , Addison-Wesley (1972) (Translated from French)
[2] O. Zariski, P. Samuel, "Commutative algebra" , 2 , v. Nostrand (1960)


Comments

Power series in non-commuting variables are becoming rapidly more important and find applications in combinatorics (enumerative graph theory), computer science (automata) and system and control theory (representation of the input-output behaviour of non-linear systems, especially bilinear systems); cf. the collection [a1] for a first idea.

Let $A'$ be a ring containing $A$ (or provided with a ring homomorphism $\phi : A \rightarrow A'$), let $\mathfrak{a}'$ be an ideal in $A'$ and suppose that $A'$ is complete in the $\mathfrak{a}'$-adic topology on $A'$. Let $x_1,\ldots,x_n$ be elements of $\mathfrak{a}'$. Then an expression $$ \sum_{ i_1,\ldots,i_n = 0 }^\infty c_{ i_1,\ldots,i_n } x_1^{i_1}\cdots x_n^{i_n} $$

where the $i_j$ range over $\mathbf{N} \cup \{0\} = \{0,1,2,\ldots \}$, $c_{ i_1,\ldots,i_n } \in A$, has a well-defined meaning in $A'$ (as the unique limit of the finite sums $$ \sum_{ i_1,\ldots,i_n = 0 }^m c_{ i_1,\ldots,i_n } x_1^{i_1}\cdots x_n^{i_n} $$


as $m \rightarrow \infty$). Such an expression is also called a formal power series over $A$. Mapping to , , defines a (continuous) homomorphism . If this homomorphism is injective, the are said to be analytically independent over .

Let now be a field with a multiplicative norm on it (i.e. ), e.g. with the usual norm or , the rational field, with the norm if , where is the -adic valuation on ( for is the exponent of the largest power of the prime number that divides ; ). Now consider all formal power series over such that there exists positive numbers and such that . These form a subring of , called the ring of convergent power series over and denoted by (or , but the latter notation also occurs for the ring of power series in non-commuting variables over ). The Weierstrass preparation theorem also holds in .

References

[a1] J. Berstel (ed.) , Series formelles en variables noncommutatives et aplications , Lab. Inform. Théor. Programmation (1978)
[a2] M. Nagata, "Local rings" , Interscience (1960)
How to Cite This Entry:
Formal power series. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Formal_power_series&oldid=36862
This article was adapted from an original article by L.V. Kuz'min (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article