Namespaces
Variants
Actions

Difference between revisions of "Matrix ring"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (link)
Line 3: Line 3:
 
The ring of all square matrices of a fixed order over a ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062850/m0628501.png" />. The ring of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062850/m0628502.png" />-dimensional matrices over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062850/m0628503.png" /> is denoted by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062850/m0628504.png" /> or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062850/m0628505.png" />. Throughout this article <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062850/m0628506.png" /> is an associative ring with identity (cf. [[Associative rings and algebras|Associative rings and algebras]]).
 
The ring of all square matrices of a fixed order over a ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062850/m0628501.png" />. The ring of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062850/m0628502.png" />-dimensional matrices over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062850/m0628503.png" /> is denoted by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062850/m0628504.png" /> or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062850/m0628505.png" />. Throughout this article <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062850/m0628506.png" /> is an associative ring with identity (cf. [[Associative rings and algebras|Associative rings and algebras]]).
  
The ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062850/m0628507.png" /> is isomorphic to the ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062850/m0628508.png" /> of all endomorphisms of the free right <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062850/m0628509.png" />-module <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062850/m06285010.png" />, possessing a basis with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062850/m06285011.png" /> elements. The matrix <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062850/m06285012.png" /> is the identity in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062850/m06285013.png" />. An associative ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062850/m06285014.png" /> with identity 1 is isomorphic to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062850/m06285015.png" /> if and only if there is in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062850/m06285016.png" /> a set of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062850/m06285017.png" /> elements <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062850/m06285018.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062850/m06285019.png" />, subject to the following conditions:
+
The ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062850/m0628507.png" /> is isomorphic to the ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062850/m0628508.png" /> of all endomorphisms of the free right <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062850/m0628509.png" />-module <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062850/m06285010.png" />, possessing a basis with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062850/m06285011.png" /> elements. The [[identity matrix]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062850/m06285012.png" /> is the identity in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062850/m06285013.png" />. An associative ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062850/m06285014.png" /> with identity 1 is isomorphic to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062850/m06285015.png" /> if and only if there is in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062850/m06285016.png" /> a set of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062850/m06285017.png" /> elements <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062850/m06285018.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062850/m06285019.png" />, subject to the following conditions:
  
 
1) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062850/m06285020.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062850/m06285021.png" />;
 
1) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062850/m06285020.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062850/m06285021.png" />;

Revision as of 21:56, 10 January 2015

full matrix ring

The ring of all square matrices of a fixed order over a ring . The ring of -dimensional matrices over is denoted by or . Throughout this article is an associative ring with identity (cf. Associative rings and algebras).

The ring is isomorphic to the ring of all endomorphisms of the free right -module , possessing a basis with elements. The identity matrix is the identity in . An associative ring with identity 1 is isomorphic to if and only if there is in a set of elements , , subject to the following conditions:

1) , ;

2) the centralizer of the set of elements in is isomorphic to .

The centre of coincides with , where is the centre of ; for the ring is non-commutative.

The multiplicative group of the ring (the group of all invertible elements), called the general linear group, is denoted by . A matrix from is invertible in if and only if its columns form a basis of the free right module of all -dimensional matrices over . If is commutative, then the invertibility of a matrix in is equivalent to the invertibility of its determinant, , in . The equality holds.

The ring is simple if and only if is simple, for the two-sided ideals in are of the form , where is a two-sided ideal in . An Artinian ring is simple if and only if it is isomorphic to a matrix ring over a skew-field (the Wedderburn–Artin theorem). If denotes the Jacobson radical of the ring , then . Consequently, every matrix ring over a semi-simple ring is semi-simple. If is regular (i.e. if for every there is a such that ), then so is . If is a ring with an invariant basis number, i.e. the number of elements in a basis of each free -module does not depend of the choice of the basis, then also has this property. The rings and are equivalent in the sense of Morita (see Morita equivalence): The category of -modules is equivalent to the category of -modules. However, the fact that projective -modules are free does not necessarily entail that projective -modules are free too. For instance, if is a field and , then there exist finitely-generated projective -modules which are not free.

References

[1] C. Faith, "Algebra: rings, modules, and categories" , 1 , Springer (1973)
[2] J. Lambek, "Lectures on rings and modules" , Blaisdell (1966)
[3] L.A. Bokut', "Associative rings" , 1 , Novosibirsk (1977) (In Russian)


Comments

References

[a1] P.M. Cohn, "Algebra" , 1–2 , Wiley (1974–1977)
How to Cite This Entry:
Matrix ring. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Matrix_ring&oldid=36229
This article was adapted from an original article by D.A. Suprunenko (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article