Difference between revisions of "Translation-invariant metric"
From Encyclopedia of Mathematics
(Importing text file) |
(LaTeX) |
||
Line 1: | Line 1: | ||
''invariant metric'' | ''invariant metric'' | ||
− | A [[ | + | A [[metric]] $\rho$ on a vector or [[linear space]] $X$ such that $\rho(x+z,y+z) = \rho(x,y)$ for all $x,y,z \in X$. A [[norm]] or an $F$-norm, $\Vert \cdot \Vert$ (cf. (the editional comments to) [[Universal space]] for a definition of this notion), defines a translation-invariant metric $\rho(x,y) = \Vert x-y \Vert$. If $(X,\rho)$ is a metric linear space, i.e. a vector space with a metric such that addition and scalar multiplication are continuous, then there is an invariant metric $\rho'$ on $X$ that is equivalent to the original one, [[#References|[a2]]]. Two metrics $\rho$, $\rho'$ on $X$ are equivalent if they induce the same topology. |
====References==== | ====References==== | ||
− | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> S. Rolewicz, "Metric linear spaces" , Reidel (1987) pp. §1.1</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> S. Kakutani, "Über die Metrisation der topologischen Gruppen" ''Proc. Imp. Acad. Tokyo'' , '''12''' (1936) pp. 82–84</TD></TR></table> | + | <table> |
+ | <TR><TD valign="top">[a1]</TD> <TD valign="top"> S. Rolewicz, "Metric linear spaces" , Reidel (1987) pp. §1.1</TD></TR> | ||
+ | <TR><TD valign="top">[a2]</TD> <TD valign="top"> S. Kakutani, "Über die Metrisation der topologischen Gruppen" ''Proc. Imp. Acad. Tokyo'' , '''12''' (1936) pp. 82–84</TD></TR> | ||
+ | </table> |
Revision as of 18:23, 8 December 2014
invariant metric
A metric $\rho$ on a vector or linear space $X$ such that $\rho(x+z,y+z) = \rho(x,y)$ for all $x,y,z \in X$. A norm or an $F$-norm, $\Vert \cdot \Vert$ (cf. (the editional comments to) Universal space for a definition of this notion), defines a translation-invariant metric $\rho(x,y) = \Vert x-y \Vert$. If $(X,\rho)$ is a metric linear space, i.e. a vector space with a metric such that addition and scalar multiplication are continuous, then there is an invariant metric $\rho'$ on $X$ that is equivalent to the original one, [a2]. Two metrics $\rho$, $\rho'$ on $X$ are equivalent if they induce the same topology.
References
[a1] | S. Rolewicz, "Metric linear spaces" , Reidel (1987) pp. §1.1 |
[a2] | S. Kakutani, "Über die Metrisation der topologischen Gruppen" Proc. Imp. Acad. Tokyo , 12 (1936) pp. 82–84 |
How to Cite This Entry:
Translation-invariant metric. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Translation-invariant_metric&oldid=35502
Translation-invariant metric. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Translation-invariant_metric&oldid=35502