Difference between revisions of "Ramanujan function"
(Importing text file) |
(LaTeX) |
||
Line 1: | Line 1: | ||
− | + | {{TEX|done}}{{MSC|11F}} | |
− | |||
− | |||
+ | The function $n \mapsto \tau(n)$, where $\tau(n)$ is the coefficient of $x^n$ ($n \ge 1$) in the expansion of the product | ||
+ | $$ | ||
+ | D(x) = x \prod_{m=1}^\infty (1 - x^m)^{24} | ||
+ | $$ | ||
as a power series: | as a power series: | ||
− | + | $$ | |
− | + | D(x) = \sum_{n=1}^\infty \tau(n) x^n \ . | |
− | + | $$ | |
If one puts | If one puts | ||
+ | $$ | ||
+ | \Delta(z) = D(\exp(2\pi i z)) | ||
+ | $$ | ||
+ | then the Ramanujan function is the $n$-th Fourier coefficient of the cusp form $\Delta(z)$, which was first investigated by S. Ramanujan [[#References|[1]]]. Certain values of the Ramanujan function: $\tau(1) = 1$, $\tau(2) = -24$, $\tau(3) = 252$, $\tau(4) = -1472$, $\tau(5) = 4830$, $\tau(6) = -6048$, $\tau(7) = -16744$, $\tau(30) = 9458784518400$. Ramanujan conjectured (and L.J. Mordell proved) that the following properties of the Ramanujan function are true: | ||
+ | $$ | ||
+ | \tau(mn) = \tau(m) \tau(n) \ \text{if}\ (m,n) = 1 \,; | ||
+ | $$ | ||
+ | $$ | ||
+ | \tau(p^{n+1}) = \tau(p^n)\tau(p) - p^{11} \tau(p^{n-1}) \ . | ||
+ | $$ | ||
− | + | Consequently, the calculation of $\tau(n)$ reduces to calculating $\tau(p)$ when $p$ is prime. It is known that $|\tau(p)| \le p^{11/2}$ (see [[Ramanujan hypothesis|Ramanujan hypothesis]]). It is known that the Ramanujan function satisfies many congruence relations. For example, Ramanujan knew the congruence | |
− | + | $$ | |
− | + | \tau(p) \equiv 1 + p^{11} \pmod{691} \ . | |
− | + | $$ | |
− | |||
− | |||
− | |||
− | |||
− | Consequently, the calculation of | ||
− | |||
− | |||
Examples of congruence relations discovered later are: | Examples of congruence relations discovered later are: | ||
− | + | $$ | |
− | + | \tau(n) \equiv \sigma_{11}(n) \pmod{2^{11}} \ \text{if}\ n \equiv 1 \pmod 8 | |
− | + | $$ | |
− | + | $$ | |
− | + | \tau(p) \equiv p + p^10 \pmod{25} | |
+ | $$ | ||
etc. | etc. | ||
====References==== | ====References==== | ||
− | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> S. Ramanujan, "On certain arithmetical functions" ''Trans. Cambridge Philos. Soc.'' , '''22''' (1916) pp. 159–184</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> J.-P. Serre, "Une interpretation des congruences relatives à la function | + | <table> |
+ | <TR><TD valign="top">[1]</TD> <TD valign="top"> S. Ramanujan, "On certain arithmetical functions" ''Trans. Cambridge Philos. Soc.'' , '''22''' (1916) pp. 159–184</TD></TR> | ||
+ | <TR><TD valign="top">[2]</TD> <TD valign="top"> J.-P. Serre, "Une interpretation des congruences relatives à la function $\tau$ de Ramanujan" ''Sém. Delange–Pisot–Poitou (Théorie des nombres)'' , '''9''' : 14 (1967/68) pp. 1–17</TD></TR> | ||
+ | <TR><TD valign="top">[3]</TD> <TD valign="top"> O.M. Fomenko, "Applications of the theory of modular forms to number theory" ''J. Soviet Math.'' , '''14''' : 4 (1980) pp. 1307–1362 ''Itogi Nauk. i Tekhn. Algebra Topol. Geom.'' , '''15''' (1977) pp. 5–91</TD></TR> | ||
+ | </table> | ||
====Comments==== | ====Comments==== | ||
− | It is still (1990) not known whether there exists an | + | It is still (1990) not known whether there exists an $n \in \mathbb{N}$ such that $\tau(n) = 0$. One believes that the answer is "no" . For an elementary introduction to the background of $\Delta(z)$, see [[#References|[a1]]]. |
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> T.M. Apostol, "Modular functions and Dirichlet series in number theory" , Springer (1976)</TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> T.M. Apostol, "Modular functions and Dirichlet series in number theory" , Springer (1976)</TD></TR></table> |
Revision as of 21:38, 27 November 2014
2020 Mathematics Subject Classification: Primary: 11F [MSN][ZBL]
The function $n \mapsto \tau(n)$, where $\tau(n)$ is the coefficient of $x^n$ ($n \ge 1$) in the expansion of the product $$ D(x) = x \prod_{m=1}^\infty (1 - x^m)^{24} $$ as a power series: $$ D(x) = \sum_{n=1}^\infty \tau(n) x^n \ . $$ If one puts $$ \Delta(z) = D(\exp(2\pi i z)) $$ then the Ramanujan function is the $n$-th Fourier coefficient of the cusp form $\Delta(z)$, which was first investigated by S. Ramanujan [1]. Certain values of the Ramanujan function: $\tau(1) = 1$, $\tau(2) = -24$, $\tau(3) = 252$, $\tau(4) = -1472$, $\tau(5) = 4830$, $\tau(6) = -6048$, $\tau(7) = -16744$, $\tau(30) = 9458784518400$. Ramanujan conjectured (and L.J. Mordell proved) that the following properties of the Ramanujan function are true: $$ \tau(mn) = \tau(m) \tau(n) \ \text{if}\ (m,n) = 1 \,; $$ $$ \tau(p^{n+1}) = \tau(p^n)\tau(p) - p^{11} \tau(p^{n-1}) \ . $$
Consequently, the calculation of $\tau(n)$ reduces to calculating $\tau(p)$ when $p$ is prime. It is known that $|\tau(p)| \le p^{11/2}$ (see Ramanujan hypothesis). It is known that the Ramanujan function satisfies many congruence relations. For example, Ramanujan knew the congruence $$ \tau(p) \equiv 1 + p^{11} \pmod{691} \ . $$
Examples of congruence relations discovered later are: $$ \tau(n) \equiv \sigma_{11}(n) \pmod{2^{11}} \ \text{if}\ n \equiv 1 \pmod 8 $$ $$ \tau(p) \equiv p + p^10 \pmod{25} $$ etc.
References
[1] | S. Ramanujan, "On certain arithmetical functions" Trans. Cambridge Philos. Soc. , 22 (1916) pp. 159–184 |
[2] | J.-P. Serre, "Une interpretation des congruences relatives à la function $\tau$ de Ramanujan" Sém. Delange–Pisot–Poitou (Théorie des nombres) , 9 : 14 (1967/68) pp. 1–17 |
[3] | O.M. Fomenko, "Applications of the theory of modular forms to number theory" J. Soviet Math. , 14 : 4 (1980) pp. 1307–1362 Itogi Nauk. i Tekhn. Algebra Topol. Geom. , 15 (1977) pp. 5–91 |
Comments
It is still (1990) not known whether there exists an $n \in \mathbb{N}$ such that $\tau(n) = 0$. One believes that the answer is "no" . For an elementary introduction to the background of $\Delta(z)$, see [a1].
References
[a1] | T.M. Apostol, "Modular functions and Dirichlet series in number theory" , Springer (1976) |
Ramanujan function. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Ramanujan_function&oldid=35020