Difference between revisions of "Graph, bipartite"
(TeX) |
(MSC 05C) |
||
Line 1: | Line 1: | ||
{{TEX|done}} | {{TEX|done}} | ||
+ | |||
+ | {{MSC|05C}} | ||
+ | |||
''bichromatic graph'' | ''bichromatic graph'' | ||
− | A graph whose set $V$ of vertices can be partitioned into two disjoint sets $V'$ and $V''$ (i.e. $V=V'\cup V''$, $V'\cap V''=\emptyset$) so that each edge connects some vertex of $V'$ with some vertex of $V''$. A graph is bipartite if and only if all its simple cycles have even length. Another frequently used definition of a bipartite graph is a graph in which two subsets $V'$ and $V''$ of vertices (parts) are given in advance. Bipartite graphs are convenient for the representation of binary relations between elements of two different types — e.g. the elements of a given set and a subset of it yield the relation of "membership of an element to a subset", for executors and types of jobs one has the relation "a given executor can carry out a given job", etc. | + | A [[graph]] whose set $V$ of vertices can be partitioned into two disjoint sets $V'$ and $V''$ (i.e. $V=V'\cup V''$, $V'\cap V''=\emptyset$) so that each edge connects some vertex of $V'$ with some vertex of $V''$. A graph is bipartite if and only if all its simple cycles have even length. Another frequently used definition of a bipartite graph is a graph in which two subsets $V'$ and $V''$ of vertices (parts) are given in advance. Bipartite graphs are convenient for the representation of binary relations between elements of two different types — e.g. the elements of a given set and a subset of it yield the relation of "membership of an element to a subset", for executors and types of jobs one has the relation "a given executor can carry out a given job", etc. |
An important problem concerning bipartite graphs is the study of matchings, that is, families of pairwise non-adjacent edges. Such problems occur, for example, in the theory of scheduling (partitioning of the edges of a bipartite graph into a minimal number of disjoint matchings), in the problem of assignment (finding the maximum number of elements in a matching), etc. The cardinality of the maximum matching in a bipartite graph is | An important problem concerning bipartite graphs is the study of matchings, that is, families of pairwise non-adjacent edges. Such problems occur, for example, in the theory of scheduling (partitioning of the edges of a bipartite graph into a minimal number of disjoint matchings), in the problem of assignment (finding the maximum number of elements in a matching), etc. The cardinality of the maximum matching in a bipartite graph is |
Revision as of 20:57, 21 November 2014
2020 Mathematics Subject Classification: Primary: 05C [MSN][ZBL]
bichromatic graph
A graph whose set $V$ of vertices can be partitioned into two disjoint sets $V'$ and $V''$ (i.e. $V=V'\cup V''$, $V'\cap V''=\emptyset$) so that each edge connects some vertex of $V'$ with some vertex of $V''$. A graph is bipartite if and only if all its simple cycles have even length. Another frequently used definition of a bipartite graph is a graph in which two subsets $V'$ and $V''$ of vertices (parts) are given in advance. Bipartite graphs are convenient for the representation of binary relations between elements of two different types — e.g. the elements of a given set and a subset of it yield the relation of "membership of an element to a subset", for executors and types of jobs one has the relation "a given executor can carry out a given job", etc.
An important problem concerning bipartite graphs is the study of matchings, that is, families of pairwise non-adjacent edges. Such problems occur, for example, in the theory of scheduling (partitioning of the edges of a bipartite graph into a minimal number of disjoint matchings), in the problem of assignment (finding the maximum number of elements in a matching), etc. The cardinality of the maximum matching in a bipartite graph is
$$|V'|-\max_{A'\subseteq V'}(|A'|-|V''(A')|),$$
where $V''(A')$ is the number of vertices of $V''$ adjacent to at least one vertex of $A'$. A complete bipartite graph is a bipartite graph in which any two vertices belonging to different subsets are connected by an edge (e.g. the graph $K_{3,3}$, see Graph, planar, Figure 1).
A generalization of the concept of a bipartite graph is the concept of a $k$-partite graph, i.e. a graph in which the vertices are partitioned into $k$ subsets so that each edge connects vertices belonging to different subsets.
References
[1] | O. Ore, "Theory of graphs" , Amer. Math. Soc. (1962) |
Comments
References
[a1] | F. Harary, "Graph theory" , Addison-Wesley (1969) pp. Chapt. 9 |
[a2] | R.J. Wilson, "Introduction to graph theory" , Longman (1985) |
Graph, bipartite. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Graph,_bipartite&oldid=34736