Difference between revisions of "Akivis algebra"
(Importing text file) |
m (link) |
||
Line 1: | Line 1: | ||
− | A [[Vector space|vector space]] over a [[Field|field]] with an anti-symmetric bilinear multiplication <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110450/a1104501.png" /> and a multilinear ternary operation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110450/a1104502.png" /> which are linked by the so-called Akivis condition, defined as follows [[#References|[a4]]], [[#References|[a5]]]. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110450/a1104503.png" /> denote the group of all six permutations and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110450/a1104504.png" /> the subgroup of all three cyclic permutations of the set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110450/a1104505.png" />. Define <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110450/a1104506.png" />. The Akivis condition reads: | + | A [[Vector space|vector space]] over a [[Field|field]] with an anti-symmetric bilinear multiplication <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110450/a1104501.png" /> and a multilinear [[ternary operation]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110450/a1104502.png" /> which are linked by the so-called Akivis condition, defined as follows [[#References|[a4]]], [[#References|[a5]]]. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110450/a1104503.png" /> denote the group of all six permutations and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110450/a1104504.png" /> the subgroup of all three cyclic permutations of the set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110450/a1104505.png" />. Define <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110450/a1104506.png" />. The Akivis condition reads: |
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110450/a1104507.png" /></td> </tr></table> | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/a/a110/a110450/a1104507.png" /></td> </tr></table> |
Revision as of 18:02, 21 November 2014
A vector space over a field with an anti-symmetric bilinear multiplication and a multilinear ternary operation which are linked by the so-called Akivis condition, defined as follows [a4], [a5]. Let denote the group of all six permutations and the subgroup of all three cyclic permutations of the set . Define . The Akivis condition reads:
The specialization yields a Lie algebra. If is an arbitrary non-associative algebra over a field with a binary bilinear multiplication (cf. also Non-associative rings and algebras), then and define an Akivis algebra on . The tangent algebra of a local analytic loop (cf. Loop, analytic) is always an Akivis algebra. This generalizes the facts that the tangent algebra of a local Lie group (cf. also Lie group, local) is a Lie algebra and that the tangent algebra of a local Moufang loop is a Mal'tsev algebra. Analytic or differentiable quasi-groups (cf. Quasi-group) and loops arise in the study of the geometry of webs (cf. Web), [a2], [a3], [a5].
References
[a1] | M.A. Akivis, "The canonical expansions of the equations of a local analytic quasigroup" Soviet Math. Dokl. , 10 (1969) pp. 1200–1203 Dokl. Akad. Nauk SSSR , 188 (1969) pp. 967–970 |
[a2] | V.V. Goldberg, "Local differentiable quasigroups and webs" O. Chein (ed.) H.O. Pflugfelder (ed.) J.D.H. Smith (ed.) , Quasigroups and Loops - Theory and Applications , Heldermann (1990) pp. 263–311 |
[a3] | V.V. Goldberg, "Theory of multicodimensional -webs" , Kluwer Acad. Publ. (1988) |
[a4] | K.H. Hofmann, K. Strambach, "The Akivis algebra of a homogeneous loop" Mathematika , 33 (1986) pp. 87–95 |
[a5] | K.H. Hofmann, K. Strambach, "Topological and analytic loops" O. Chein (ed.) H.O. Pflugfelder (ed.) J.D.H. Smith (ed.) , Quasigroups and Loops - Theory and Applications , Heldermann (1990) pp. 205–262 |
[a6] | P.O. Miheev, L.V. Sabinin, "Quasigroups and differential geometry" O. Chein (ed.) H.O. Pflugfelder (ed.) J.D.H. Smith (ed.) , Quasigroups and Loops - Theory and Applications , Heldermann (1990) pp. 357–430 |
Akivis algebra. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Akivis_algebra&oldid=34698