Difference between revisions of "Normal basis theorem"
(Importing text file) |
(LaTeX) |
||
Line 1: | Line 1: | ||
− | Let | + | Let $E$ be a (finite-dimensional) [[Galois extension]] of a field $F$. Then there exists a normal basis for $E/F$, that is, a basis consisting of an orbit of the [[Galois group]] $G = \mathrm{Gal}(E/F)$. Thus, an element $z \in E$ generates a normal basis if and only if its conjugates $z^\sigma$, $\sigma \in G$, are linearly independent over $F$; see, e.g., [[#References|[a3]]]. The element $z$ is called a normal basis generator or a free element in $E/F$. A far-reaching strengthening of the normal basis theorem is due to D. Blessenohl and K. Johnsen [[#References|[a1]]]: There exists an element $w \in E$ that is simultaneously free in $E/K$ for every intermediate field $K$. |
− | Such an element is called completely free (or completely normal). For the important special case where | + | Such an element is called completely free (or completely normal). For the important special case where $E$ is a [[Galois field]], a constructive treatment of normal bases and completely free elements can be found in [[#References|[a2]]]. |
====References==== | ====References==== | ||
− | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> D. Blessenohl, K. Johnsen, "Eine Verschärfung des Satzes von der Normalbasis" ''J. Algebra'' , '''103''' (1986) pp. 141–159</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> D. Hachenberger, "Finite fields: Normal bases and completely free elements" , Kluwer Acad. Publ. (1997)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> N. Jacobson, "Basic algebra" , '''I''' , Freeman (1985) (Edition: Second)</TD></TR></table> | + | <table> |
+ | <TR><TD valign="top">[a1]</TD> <TD valign="top"> D. Blessenohl, K. Johnsen, "Eine Verschärfung des Satzes von der Normalbasis" ''J. Algebra'' , '''103''' (1986) pp. 141–159</TD></TR> | ||
+ | <TR><TD valign="top">[a2]</TD> <TD valign="top"> D. Hachenberger, "Finite fields: Normal bases and completely free elements" , Kluwer Acad. Publ. (1997)</TD></TR> | ||
+ | <TR><TD valign="top">[a3]</TD> <TD valign="top"> N. Jacobson, "Basic algebra" , '''I''' , Freeman (1985) (Edition: Second)</TD></TR> | ||
+ | </table> | ||
+ | |||
+ | {{TEX|done}} |
Revision as of 18:26, 2 November 2014
Let $E$ be a (finite-dimensional) Galois extension of a field $F$. Then there exists a normal basis for $E/F$, that is, a basis consisting of an orbit of the Galois group $G = \mathrm{Gal}(E/F)$. Thus, an element $z \in E$ generates a normal basis if and only if its conjugates $z^\sigma$, $\sigma \in G$, are linearly independent over $F$; see, e.g., [a3]. The element $z$ is called a normal basis generator or a free element in $E/F$. A far-reaching strengthening of the normal basis theorem is due to D. Blessenohl and K. Johnsen [a1]: There exists an element $w \in E$ that is simultaneously free in $E/K$ for every intermediate field $K$.
Such an element is called completely free (or completely normal). For the important special case where $E$ is a Galois field, a constructive treatment of normal bases and completely free elements can be found in [a2].
References
[a1] | D. Blessenohl, K. Johnsen, "Eine Verschärfung des Satzes von der Normalbasis" J. Algebra , 103 (1986) pp. 141–159 |
[a2] | D. Hachenberger, "Finite fields: Normal bases and completely free elements" , Kluwer Acad. Publ. (1997) |
[a3] | N. Jacobson, "Basic algebra" , I , Freeman (1985) (Edition: Second) |
Normal basis theorem. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Normal_basis_theorem&oldid=34236