Namespaces
Variants
Actions

Difference between revisions of "Unirational variety"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Category:Algebraic geometry)
(LaTeX)
Line 1: Line 1:
An [[Algebraic variety|algebraic variety]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095450/u0954501.png" /> over a field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095450/u0954502.png" /> into which there exists a rational mapping from a projective space, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095450/u0954503.png" />, such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095450/u0954504.png" /> is dense in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095450/u0954505.png" /> and the extension of the field of rational functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095450/u0954506.png" /> is separable. In other words, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095450/u0954507.png" /> has a separable extension which is purely transcendental (cf. [[Transcendental extension|Transcendental extension]]).
+
An [[Algebraic variety|algebraic variety]] $X$ over a field $k$ into which there exists a rational mapping from a projective space, $\phi : \mathbf{P}^n \rightarrow X$, such that $\phi(\mathbf{P}^n)$ is dense in $X$ and the extension of the field of rational functions $k(\mathbf{P}^n)/k(X)$ is separable. In other words, $k(X)$ has a separable extension which is purely transcendental (cf. [[Transcendental extension|Transcendental extension]]).
  
Unirational varieties are close to rational varieties (cf. [[Rational variety|Rational variety]]), e.g. on a unirational variety there are no regular differential forms, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095450/u0954508.png" /> for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095450/u0954509.png" />. The problem of the coincidence of rational and unirational varieties is called the [[Lüroth problem|Lüroth problem]]; the answer is negative.
+
Unirational varieties are close to rational varieties (cf. [[Rational variety|Rational variety]]), e.g. on a unirational variety there are no regular differential forms, $H^0(X,\Omega_X^p) = 0$ for $p \ge 1$. The problem of the coincidence of rational and unirational varieties is called the [[Lüroth problem|Lüroth problem]]; the answer is negative.
  
 
====References====
 
====References====
Line 7: Line 7:
  
 
[[Category:Algebraic geometry]]
 
[[Category:Algebraic geometry]]
 +
 +
{{TEX|done}}

Revision as of 10:14, 2 November 2014

An algebraic variety $X$ over a field $k$ into which there exists a rational mapping from a projective space, $\phi : \mathbf{P}^n \rightarrow X$, such that $\phi(\mathbf{P}^n)$ is dense in $X$ and the extension of the field of rational functions $k(\mathbf{P}^n)/k(X)$ is separable. In other words, $k(X)$ has a separable extension which is purely transcendental (cf. Transcendental extension).

Unirational varieties are close to rational varieties (cf. Rational variety), e.g. on a unirational variety there are no regular differential forms, $H^0(X,\Omega_X^p) = 0$ for $p \ge 1$. The problem of the coincidence of rational and unirational varieties is called the Lüroth problem; the answer is negative.

References

[1] I.R. Shafarevich, "Basic algebraic geometry" , Springer (1977) (Translated from Russian) MR0447223 Zbl 0362.14001
How to Cite This Entry:
Unirational variety. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Unirational_variety&oldid=34211
This article was adapted from an original article by Vik.S. Kulikov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article