Difference between revisions of "Rational curve"
(TeX) |
(Category:Algebraic geometry) |
||
Line 13: | Line 13: | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> W. Fulton, "Algebraic curves" , Benjamin (1969) pp. 66 {{MR|0313252}} {{MR|0260752}} {{ZBL|0194.21901}} {{ZBL|0181.23901}} </TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> I.R. Shafarevich, "Basic algebraic geometry" , Springer (1977) (Translated from Russian) {{MR|0447223}} {{ZBL|0362.14001}} </TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> W. Fulton, "Algebraic curves" , Benjamin (1969) pp. 66 {{MR|0313252}} {{MR|0260752}} {{ZBL|0194.21901}} {{ZBL|0181.23901}} </TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> I.R. Shafarevich, "Basic algebraic geometry" , Springer (1977) (Translated from Russian) {{MR|0447223}} {{ZBL|0362.14001}} </TD></TR></table> | ||
+ | |||
+ | [[Category:Algebraic geometry]] |
Latest revision as of 10:10, 2 November 2014
A one-dimensional algebraic variety, defined over an algebraically closed field $k$, whose field of rational functions is a purely transcendental extension of degree 1 of $k$. Every non-singular complete rational curve is isomorphic to the projective line $\mathbf P^1$. A complete singular curve $X$ is rational if and only if its geometric genus $g$ is zero, that is, when there are no regular differential forms on $X$.
When $k$ is the field $\mathbf C$ of complex numbers, the (only) non-singular complete rational curve $X$ is the Riemann sphere $\mathbf C\cup\{\infty\}$.
Comments
In classic literature a rational curve is also called a unicursal curve.
If $X$ is defined over a not necessarily algebraically closed field $k$ and $X$ is birationally equivalent to $P_k^1$ over $k$, $X$ is said to be a $k$-rational curve.
References
[a1] | W. Fulton, "Algebraic curves" , Benjamin (1969) pp. 66 MR0313252 MR0260752 Zbl 0194.21901 Zbl 0181.23901 |
[a2] | I.R. Shafarevich, "Basic algebraic geometry" , Springer (1977) (Translated from Russian) MR0447223 Zbl 0362.14001 |
Rational curve. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Rational_curve&oldid=34209