Difference between revisions of "Measure of irrationality"
(TeX) |
(Category:Number theory) |
||
Line 24: | Line 24: | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> A.Ya. Khinchin, "Continued fractions" , Univ. Chicago Press (1964) (Translated from Russian)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> A.Ya. Khinchin, "Continued fractions" , Univ. Chicago Press (1964) (Translated from Russian)</TD></TR></table> | ||
+ | |||
+ | [[Category:Number theory]] |
Revision as of 19:29, 31 October 2014
of a real number $\xi$
The function
$$L(\xi,H)=\min|h_1\xi+h_0|,$$
where the minimum is over all pairs $h_0,h_1$ of integral rational numbers such that
$$|h_0|,|h_1|\leq H,\quad |h_0|+|h_1|\neq0.$$
The concept of the measure of irrationality is a particular case of those of the measure of linear independence and the measure of transcendency (cf. Linear independence, measure of; Transcendency, measure of). The measure of irrationality indicates how "well" the number $\xi$ can be approximated by rational numbers. For all real irrational numbers one has
$$L(\xi,H)<\frac1{\sqrt5}\frac1H,$$
but for any $\epsilon>0$ and almost-all (in the sense of the Lebesgue measure) real numbers $\xi$,
$$L(\xi,H)>\frac{C}{H^{1+\epsilon}},$$
where $C=C(\epsilon,\xi)>0$. However, for any function $\phi$ with $\phi(H)\to0$ as $H\to\infty$ and $\phi(H)>0$, there exists a number $\xi_\phi$ such that for all $H\geq1$,
$$0<L(\xi_\phi,H)<\phi(H).$$
References
[1] | A.Ya. Khinchin, "Continued fractions" , Univ. Chicago Press (1964) (Translated from Russian) |
Measure of irrationality. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Measure_of_irrationality&oldid=34126