|
|
Line 1: |
Line 1: |
− | Linear operators <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023450/c0234501.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023450/c0234502.png" />, of which <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023450/c0234503.png" /> is of general type and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023450/c0234504.png" /> is bounded, and which are such that | + | {{TEX|done}} |
| + | Linear operators and T, of which T is of general type and B is bounded, and which are such that |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023450/c0234505.png" /></td> <td valign="top" style="width:5%;text-align:right;">(1)</td></tr></table>
| + | $$BT\subseteq TB\tag{1}$$ |
| | | |
− | (the symbol <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023450/c0234506.png" /> means that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023450/c0234507.png" /> is an extension of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023450/c0234508.png" />, cf. [[Extension of an operator|Extension of an operator]]). The commutation relation is denoted by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023450/c0234509.png" /> and satisfies the following rules: | + | (the symbol T\subseteq T_1 means that T_1 is an extension of T, cf. [[Extension of an operator|Extension of an operator]]). The commutation relation is denoted by B\cup T and satisfies the following rules: |
| | | |
− | 1) if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023450/c02345010.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023450/c02345011.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023450/c02345012.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023450/c02345013.png" />; | + | 1) if B\cup T_1, B\cup T_2, then B\cup(T_1+T_2), B\cup T_1T_2; |
| | | |
− | 2) if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023450/c02345014.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023450/c02345015.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023450/c02345016.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023450/c02345017.png" />; | + | 2) if B_1\cup T, B_2\cup T, then (B_1+B_2)\cup T, B_1B_2\cup T; |
| | | |
− | 3) if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023450/c02345018.png" /> exists, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023450/c02345019.png" /> implies that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023450/c02345020.png" />; | + | 3) if T^{-1} exists, then B\cup T implies that B\cup T^{-1}; |
| | | |
− | 4) if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023450/c02345021.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023450/c02345022.png" /> then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023450/c02345023.png" />; | + | 4) if B\cup T_n, $n=1,2,\dots,$ then B\cup\lim T_n; |
| | | |
− | 5) if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023450/c02345024.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023450/c02345025.png" /> then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023450/c02345026.png" />, provided that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023450/c02345027.png" /> is bounded and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023450/c02345028.png" /> is closed. | + | 5) if B_n\cup T, $n=1,2,\dots,$ then \lim B_n\cup T, provided that \lim B_n is bounded and T is closed. |
| | | |
| If the two operators are defined on the entire space, condition 1) reduces to the usual one: | | If the two operators are defined on the entire space, condition 1) reduces to the usual one: |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023450/c02345029.png" /></td> <td valign="top" style="width:5%;text-align:right;">(2)</td></tr></table>
| + | $$BT=TB,\tag{2}$$ |
| | | |
− | and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023450/c02345030.png" /> is not required to be bounded. The generalization of (2) is justified by the fact that even a bounded operator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023450/c02345031.png" /> need not commute with its inverse <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023450/c02345032.png" /> if the latter is not defined on the entire space. | + | and B is not required to be bounded. The generalization of \ref{2} is justified by the fact that even a bounded operator B need not commute with its inverse B^{-1} if the latter is not defined on the entire space. |
| | | |
| ====References==== | | ====References==== |
| <table><TR><TD valign="top">[1]</TD> <TD valign="top"> L.A. Lyusternik, V.I. Sobolev, "Elements of functional analysis" , Hindushtan Publ. Comp. (1974) (Translated from Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> F. Riesz, B. Szökefalvi-Nagy, "Functional analysis" , F. Ungar (1955) (Translated from French)</TD></TR></table> | | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> L.A. Lyusternik, V.I. Sobolev, "Elements of functional analysis" , Hindushtan Publ. Comp. (1974) (Translated from Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> F. Riesz, B. Szökefalvi-Nagy, "Functional analysis" , F. Ungar (1955) (Translated from French)</TD></TR></table> |
Revision as of 09:46, 27 October 2014
Linear operators B and T, of which T is of general type and B is bounded, and which are such that
BT\subseteq TB\tag{1}
(the symbol T\subseteq T_1 means that T_1 is an extension of T, cf. Extension of an operator). The commutation relation is denoted by B\cup T and satisfies the following rules:
1) if B\cup T_1, B\cup T_2, then B\cup(T_1+T_2), B\cup T_1T_2;
2) if B_1\cup T, B_2\cup T, then (B_1+B_2)\cup T, B_1B_2\cup T;
3) if T^{-1} exists, then B\cup T implies that B\cup T^{-1};
4) if B\cup T_n, n=1,2,\dots, then B\cup\lim T_n;
5) if B_n\cup T, n=1,2,\dots, then \lim B_n\cup T, provided that \lim B_n is bounded and T is closed.
If the two operators are defined on the entire space, condition 1) reduces to the usual one:
BT=TB,\tag{2}
and B is not required to be bounded. The generalization of \ref{2} is justified by the fact that even a bounded operator B need not commute with its inverse B^{-1} if the latter is not defined on the entire space.
References
[1] | L.A. Lyusternik, V.I. Sobolev, "Elements of functional analysis" , Hindushtan Publ. Comp. (1974) (Translated from Russian) |
[2] | F. Riesz, B. Szökefalvi-Nagy, "Functional analysis" , F. Ungar (1955) (Translated from French) |
How to Cite This Entry:
Commuting operators. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Commuting_operators&oldid=34095
This article was adapted from an original article by M.I. Voitsekhovskii (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098.
See original article