Difference between revisions of "Diagonal matrix"
From Encyclopedia of Mathematics
(Category:Special matrices) |
(See also: Defective matrix) |
||
Line 11: | Line 11: | ||
where the $a_i$ are elements of $K$. | where the $a_i$ are elements of $K$. | ||
+ | See also: [[Defective matrix]]. | ||
[[Category:Special matrices]] | [[Category:Special matrices]] |
Revision as of 20:42, 17 October 2014
A square matrix in which all entries — with the possible exception of the elements on the main diagonal — are zero.
Comments
I.e. an $(n\times n)$ diagonal matrix over a field $K$ has the form
$$\begin{pmatrix}a_1&0&\ldots&0\\0&a_2&\ldots&0\\\ldots&\ldots&\ldots&\ldots\\0&\ldots&\ldots&a_n\end{pmatrix},$$
where the $a_i$ are elements of $K$.
See also: Defective matrix.
How to Cite This Entry:
Diagonal matrix. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Diagonal_matrix&oldid=33751
Diagonal matrix. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Diagonal_matrix&oldid=33751
This article was adapted from an original article by O.A. Ivanova (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article