Difference between revisions of "Riesz summation method"
(Importing text file) |
(TeX) |
||
Line 1: | Line 1: | ||
− | A method for summing series of numbers and functions; denoted by | + | {{TEX|done}} |
+ | A method for summing series of numbers and functions; denoted by $(R,\lambda,k)$. A series $\sum_{n=0}^\infty a_n$ is summable by the Riesz summation method $(R,\lambda,k)$ to the sum $s$ if | ||
− | + | $$\lim_{\omega\to+\infty}\sum_{\lambda_n\leq\omega}\left(1-\frac{\lambda_n}{\omega}\right)^ka_n=s,$$ | |
− | where | + | where $k>0$, $0\leq\lambda_0<\ldots<\lambda_n\to\infty$, and $\omega$ is a continuous parameter. The method was introduced by M. Riesz [[#References|[1]]] for the summation of [[Dirichlet series|Dirichlet series]]. The method $(R,\lambda,k)$ is regular; when $\lambda_n=n$ it is equivalent to the Cesàro summation method $(C,k)$ (cf. [[Cesàro summation methods|Cesàro summation methods]]), and these methods are compatible (cf. [[Compatibility of summation methods|Compatibility of summation methods]]). |
− | Riesz considered also a method in which summability of the series | + | Riesz considered also a method in which summability of the series $\sum_{n=0}^\infty a_n$ is defined by means of the limit of the sequence $\{\sigma_m\}$, where |
− | + | $$\sigma_m=\frac{1}{P_m}\sum_{k=0}^mp_ks_k,$$ | |
− | + | $$P_m=\sum_{k=0}^mp_k\neq0,\quad s_k=\sum_{n=0}^ka_n.$$ | |
− | This method is denoted by | + | This method is denoted by $(R,p_n)$. The method $(R,\lambda,k)$ is a modification of the method $(R,p_n)$ (when $k=1$) and is a generalization of it to the case of an arbitrary $k>0$. |
====References==== | ====References==== |
Revision as of 17:01, 18 September 2014
A method for summing series of numbers and functions; denoted by $(R,\lambda,k)$. A series $\sum_{n=0}^\infty a_n$ is summable by the Riesz summation method $(R,\lambda,k)$ to the sum $s$ if
$$\lim_{\omega\to+\infty}\sum_{\lambda_n\leq\omega}\left(1-\frac{\lambda_n}{\omega}\right)^ka_n=s,$$
where $k>0$, $0\leq\lambda_0<\ldots<\lambda_n\to\infty$, and $\omega$ is a continuous parameter. The method was introduced by M. Riesz [1] for the summation of Dirichlet series. The method $(R,\lambda,k)$ is regular; when $\lambda_n=n$ it is equivalent to the Cesàro summation method $(C,k)$ (cf. Cesàro summation methods), and these methods are compatible (cf. Compatibility of summation methods).
Riesz considered also a method in which summability of the series $\sum_{n=0}^\infty a_n$ is defined by means of the limit of the sequence $\{\sigma_m\}$, where
$$\sigma_m=\frac{1}{P_m}\sum_{k=0}^mp_ks_k,$$
$$P_m=\sum_{k=0}^mp_k\neq0,\quad s_k=\sum_{n=0}^ka_n.$$
This method is denoted by $(R,p_n)$. The method $(R,\lambda,k)$ is a modification of the method $(R,p_n)$ (when $k=1$) and is a generalization of it to the case of an arbitrary $k>0$.
References
[1] | M. Riesz, "Une méthode de sommation équivalente à la méthode des moyennes arithmétique" C.R. Acad. Sci. Paris , 152 (1911) pp. 1651–1654 |
[2] | F. Riesz, "Sur la sommation des séries de Dirichlet" C.R. Acad. Sci. Paris , 149 (1909) pp. 18–21 |
[3] | G.H. Hardy, M. Riesz, "The general theory of Dirichlet series" , Cambridge Univ. Press (1915) |
[4] | G.H. Hardy, "Divergent series" , Clarendon Press (1949) |
Comments
References
[a1] | K. Zeller, W. Beekmann, "Theorie der Limitierungsverfahren" , Springer (1970) |
Riesz summation method. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Riesz_summation_method&oldid=33312