Namespaces
Variants
Actions

Difference between revisions of "Tsirelson space"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
(TeX)
 
Line 1: Line 1:
A specific example of a reflexive [[Banach space|Banach space]] (cf. [[Reflexive space|Reflexive space]]) which does not contain an imbedded <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094400/t0944001.png" />-space or an imbedded <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094400/t0944002.png" />-space. On the other hand, the classical Banach spaces, such as the spaces <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094400/t0944003.png" /> of equivalence classes of measurable functions whose <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094400/t0944004.png" />-th powers are integrable and the spaces <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094400/t0944005.png" /> of continuous scalar-valued functions on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094400/t0944006.png" /> with the supremum norm, all do contain a copy of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094400/t0944007.png" /> or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094400/t0944008.png" />, and so do all Orlicz spaces (cf. [[Orlicz space|Orlicz space]]).
+
{{TEX|done}}
 +
A specific example of a reflexive [[Banach space|Banach space]] (cf. [[Reflexive space|Reflexive space]]) which does not contain an imbedded $l_p$-space or an imbedded $c_0$-space. On the other hand, the classical Banach spaces, such as the spaces $L_p(\mu)=L_p(\Omega,\Sigma,\mu)$ of equivalence classes of measurable functions whose $p$-th powers are integrable and the spaces $C(K)$ of continuous scalar-valued functions on $K$ with the supremum norm, all do contain a copy of $c_0$ or $l_p$, and so do all Orlicz spaces (cf. [[Orlicz space|Orlicz space]]).
  
For a selection of results concerning Banach spaces which do contain <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094400/t0944009.png" /> or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094400/t09440010.png" /> see [[#References|[a3]]], Sect. 2e.
+
For a selection of results concerning Banach spaces which do contain $l_p$ or $c_0$ see [[#References|[a3]]], Sect. 2e.
  
 
====References====
 
====References====
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  B.S. Tsirelson,  "Not every Banach space contains an imbedding of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094400/t09440011.png" /> or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094400/t09440012.png" />"  ''Funct. Anal. Appl.'' , '''8''' :  2  (1974)  pp. 138–141  ''Funkts. Anal. Prilozhen.'' , '''8''' :  2  (1974)  pp. 57–60</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  P.G. Casazza,  Th.J. Shura,  "Tsirelson's space" , ''Lect. notes in math.'' , '''1363''' , Springer  (1989)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  J. Lindenstrauss,  L. Tzafriri,  "Classical Banach spaces" , '''1. Sequence spaces''' , Springer  (1977)</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top">  D. van Dulst,  "Characterizations of Banach spaces not containing <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t094/t094400/t09440013.png" />" , CWI  (1989)</TD></TR></table>
+
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  B.S. Tsirelson,  "Not every Banach space contains an imbedding of $l_p$ or $c_0$"  ''Funct. Anal. Appl.'' , '''8''' :  2  (1974)  pp. 138–141  ''Funkts. Anal. Prilozhen.'' , '''8''' :  2  (1974)  pp. 57–60</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  P.G. Casazza,  Th.J. Shura,  "Tsirelson's space" , ''Lect. notes in math.'' , '''1363''' , Springer  (1989)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  J. Lindenstrauss,  L. Tzafriri,  "Classical Banach spaces" , '''1. Sequence spaces''' , Springer  (1977)</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top">  D. van Dulst,  "Characterizations of Banach spaces not containing $L^1$" , CWI  (1989)</TD></TR></table>

Latest revision as of 14:06, 11 August 2014

A specific example of a reflexive Banach space (cf. Reflexive space) which does not contain an imbedded $l_p$-space or an imbedded $c_0$-space. On the other hand, the classical Banach spaces, such as the spaces $L_p(\mu)=L_p(\Omega,\Sigma,\mu)$ of equivalence classes of measurable functions whose $p$-th powers are integrable and the spaces $C(K)$ of continuous scalar-valued functions on $K$ with the supremum norm, all do contain a copy of $c_0$ or $l_p$, and so do all Orlicz spaces (cf. Orlicz space).

For a selection of results concerning Banach spaces which do contain $l_p$ or $c_0$ see [a3], Sect. 2e.

References

[a1] B.S. Tsirelson, "Not every Banach space contains an imbedding of $l_p$ or $c_0$" Funct. Anal. Appl. , 8 : 2 (1974) pp. 138–141 Funkts. Anal. Prilozhen. , 8 : 2 (1974) pp. 57–60
[a2] P.G. Casazza, Th.J. Shura, "Tsirelson's space" , Lect. notes in math. , 1363 , Springer (1989)
[a3] J. Lindenstrauss, L. Tzafriri, "Classical Banach spaces" , 1. Sequence spaces , Springer (1977)
[a4] D. van Dulst, "Characterizations of Banach spaces not containing $L^1$" , CWI (1989)
How to Cite This Entry:
Tsirelson space. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Tsirelson_space&oldid=32836