Namespaces
Variants
Actions

Difference between revisions of "Unitary transformation"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
(TeX)
 
Line 1: Line 1:
 +
{{TEX|done}}
 
''unitary mapping''
 
''unitary mapping''
  
A [[Linear transformation|linear transformation]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095590/u0955901.png" /> of a [[Unitary space|unitary space]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095590/u0955902.png" /> preserving the [[Inner product|inner product]] of vectors, i.e. such that for any vectors <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095590/u0955903.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095590/u0955904.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095590/u0955905.png" /> one has the equality
+
A [[Linear transformation|linear transformation]] $A$ of a [[Unitary space|unitary space]] $L$ preserving the [[Inner product|inner product]] of vectors, i.e. such that for any vectors $x$ and $y$ of $L$ one has the equality
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095590/u0955906.png" /></td> </tr></table>
+
$$(Ax,Ay)=(x,y).$$
  
 
A unitary transformation preserves, in particular, the length of a vector. Conversely, if a linear transformation of a unitary space preserves the lengths of all vectors, then it is unitary. The eigenvalues of a unitary transformation have modulus 1; the eigenspaces corresponding to different eigenvalues are orthogonal.
 
A unitary transformation preserves, in particular, the length of a vector. Conversely, if a linear transformation of a unitary space preserves the lengths of all vectors, then it is unitary. The eigenvalues of a unitary transformation have modulus 1; the eigenspaces corresponding to different eigenvalues are orthogonal.
  
A linear transformation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095590/u0955907.png" /> of a finite-dimensional unitary space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095590/u0955908.png" /> is unitary if and only if it satisfies any of the following conditions:
+
A linear transformation $A$ of a finite-dimensional unitary space $L$ is unitary if and only if it satisfies any of the following conditions:
  
1) in any orthonormal basis the transformation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095590/u0955909.png" /> corresponds to a [[Unitary matrix|unitary matrix]];
+
1) in any orthonormal basis the transformation $A$ corresponds to a [[Unitary matrix|unitary matrix]];
  
2) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095590/u09559010.png" /> maps any orthonormal basis to an orthonormal basis;
+
2) $A$ maps any orthonormal basis to an orthonormal basis;
  
3) in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095590/u09559011.png" /> there exists an orthonormal basis of eigenvectors of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095590/u09559012.png" />, and, moreover, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095590/u09559013.png" /> has in this basis a diagonal matrix with diagonal entries of modulus 1.
+
3) in $L$ there exists an orthonormal basis of eigenvectors of $A$, and, moreover, $A$ has in this basis a diagonal matrix with diagonal entries of modulus 1.
  
 
The unitary transformations of a given unitary space form a group under multiplication of transformations (called the [[Unitary group|unitary group]]).
 
The unitary transformations of a given unitary space form a group under multiplication of transformations (called the [[Unitary group|unitary group]]).

Latest revision as of 11:38, 1 August 2014

unitary mapping

A linear transformation $A$ of a unitary space $L$ preserving the inner product of vectors, i.e. such that for any vectors $x$ and $y$ of $L$ one has the equality

$$(Ax,Ay)=(x,y).$$

A unitary transformation preserves, in particular, the length of a vector. Conversely, if a linear transformation of a unitary space preserves the lengths of all vectors, then it is unitary. The eigenvalues of a unitary transformation have modulus 1; the eigenspaces corresponding to different eigenvalues are orthogonal.

A linear transformation $A$ of a finite-dimensional unitary space $L$ is unitary if and only if it satisfies any of the following conditions:

1) in any orthonormal basis the transformation $A$ corresponds to a unitary matrix;

2) $A$ maps any orthonormal basis to an orthonormal basis;

3) in $L$ there exists an orthonormal basis of eigenvectors of $A$, and, moreover, $A$ has in this basis a diagonal matrix with diagonal entries of modulus 1.

The unitary transformations of a given unitary space form a group under multiplication of transformations (called the unitary group).


Comments

References

[a1] W.H. Greub, "Linear algebra" , Springer (1975) pp. 338ff
How to Cite This Entry:
Unitary transformation. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Unitary_transformation&oldid=32651
This article was adapted from an original article by A.L. Onishchik (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article