Namespaces
Variants
Actions

Difference between revisions of "Lindelöf construction"

From Encyclopedia of Mathematics
Jump to: navigation, search
m (moved Lindelof construction to Lindelöf construction over redirect: accented title)
(TeX)
Line 1: Line 1:
 +
{{TEX|done}}
 
A geometrical construction to find conjugate points in the problem of finding a minimal surface of revolution (see Fig.).
 
A geometrical construction to find conjugate points in the problem of finding a minimal surface of revolution (see Fig.).
  
Line 5: Line 6:
 
Figure: l058950a
 
Figure: l058950a
  
Lindelöf's construction remains suitable for any variational problem of the simplest type on the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058950/l0589501.png" />-plane for which the general integral of the [[Euler equation|Euler equation]] can be represented in the form
+
Lindelöf's construction remains suitable for any variational problem of the simplest type on the $(x,y)$-plane for which the general integral of the [[Euler equation|Euler equation]] can be represented in the form
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058950/l0589502.png" /></td> </tr></table>
+
$$\frac{y}{c_1}=f\left(\frac{x-c_2}{c_1}\right).$$
  
The tangents to the extremals at conjugate points <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058950/l0589503.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058950/l0589504.png" /> intersect at some point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058950/l0589505.png" /> on the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058950/l0589506.png" />-axis, and the value of the variable integral along the arc <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058950/l0589507.png" /> is equal to its value on the polygonal line <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058950/l0589508.png" /> (see [[#References|[2]]]). An example is the [[Catenoid|catenoid]] with generating curve
+
The tangents to the extremals at conjugate points $A$ and $A'$ intersect at some point $T$ on the $x$-axis, and the value of the variable integral along the arc $AA'$ is equal to its value on the polygonal line $ATA'$ (see [[#References|[2]]]). An example is the [[Catenoid|catenoid]] with generating curve
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l058/l058950/l0589509.png" /></td> </tr></table>
+
$$\frac{y}{c_1}=\cosh\frac{x-c_2}{c_1}.$$
  
 
====References====
 
====References====

Revision as of 17:05, 2 July 2014

A geometrical construction to find conjugate points in the problem of finding a minimal surface of revolution (see Fig.).

Figure: l058950a

Lindelöf's construction remains suitable for any variational problem of the simplest type on the $(x,y)$-plane for which the general integral of the Euler equation can be represented in the form

$$\frac{y}{c_1}=f\left(\frac{x-c_2}{c_1}\right).$$

The tangents to the extremals at conjugate points $A$ and $A'$ intersect at some point $T$ on the $x$-axis, and the value of the variable integral along the arc $AA'$ is equal to its value on the polygonal line $ATA'$ (see [2]). An example is the catenoid with generating curve

$$\frac{y}{c_1}=\cosh\frac{x-c_2}{c_1}.$$

References

[1] E. Lindelöf, "Leçons de calcul des variations" , Paris (1861)
[2] O. Bolza, Bull. Math. Soc. , 18 : 3 (1911) pp. 107–110
[3] C. Carathéodory, "Variationsrechnung und partielle Differentialgleichungen erster Ordnung" , Teubner (1956)


Comments

References

[a1] A.E. Bryson, Y.-C. Ho, "Applied optimal control" , Blaisdell (1969)
How to Cite This Entry:
Lindelöf construction. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Lindel%C3%B6f_construction&oldid=32354
This article was adapted from an original article by V.V. Okhrimenko (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article