Namespaces
Variants
Actions

Difference between revisions of "Hankel functions"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
 
Line 1: Line 1:
[[Cylinder functions|Cylinder functions]] of the third kind. They may be defined in terms of [[Bessel functions|Bessel functions]] as follows:
+
{{MSC|33C10}}
 +
{{TEX|done}}
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046310/h0463101.png" /></td> </tr></table>
+
More commonly called [[Bessel functions]] (or [[Cylinder functions]]) of the third kind. These functions were introduced by H. Hankel in 1869.
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046310/h0463102.png" /></td> </tr></table>
+
They may be defined in terms of [[Bessel functions|Bessel functions]] of the
 +
first and second kind (see [[Neumann function]] for the latter) as follows:
 +
\begin{align}
 +
&H^{(1)}_\nu = J_\nu + i Y_\nu\, ,\label{e:def_1}\\
 +
&H^{(2)}_\nu = J_\nu - i Y_\nu\, .\label{e:def_2}\\
 +
\end{align}
 +
$\nu$ is here a complex parameter.
 +
In particular, when $\nu\not\in \mathbb Z$, we have the expressions
 +
\begin{align}
 +
&H^{(1)}_\nu (z) = \frac{J_{-\nu} (z) - e^{-\nu \pi i} J_\nu (z)}{i\sin \nu\pi}\\
 +
&H^{(2)}_\nu (z) = \frac{J_{-\nu} (z) - e^{\nu \pi i} J_\nu (z)}{-i\sin \nu\pi i}\, ,
 +
\end{align}
 +
whereas for integer values $n$ of $\nu$ analogous formulas hold if we replace the right hand sides with their limits as $\nu\to n$.  
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046310/h0463103.png" /> is not an integer. This implies the important relations
+
This implies the important relations
 +
\begin{align*}
 +
& H^{(1}_{-\nu} (z) = e^{i\nu \pi} H^{(1)}_\nu (z)\\
 +
&H^{(2)}_{-\nu} (z) = e^{-i\nu \pi} H^{(2)}_\nu (z)\, .
 +
\end{align*}
 +
When $\nu=p$ is real, the Bessel functions of the first kind take real values on the real axis. So it is obvious that, for $\nu = p$ real, $H^{(1)}_p$ and $H^{(2)}_p$
 +
take complex conjugate values on the real axis. Moreover,
 +
\[
 +
i^{p+1}  H^{(1)}_p (ix) \qquad \mbox{and} \qquad i^{-(p+1)} H^{(2)}_p (-ix)
 +
\]
 +
are real if $x$ is real and positive.  
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046310/h0463104.png" /></td> </tr></table>
+
Hankel functions have simple asymptotic formulas for large $|z|$ when $\nu=p$ is real:
 
+
\begin{align*}
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046310/h0463105.png" /></td> </tr></table>
+
&H^{(1)}_p (z) \sim \sqrt{\frac{2}{\pi z}} \exp \left(i \left(z - p \frac{\pi}{2} - \frac{\pi}{4}\right)\right)\, ,\\
 
+
&H^{(2)}_p (z) \sim \sqrt{\frac{2}{\pi z}} \exp \left(- i \left(z - p \frac{\pi}{2} - \frac{\pi}{4}\right)\right)\, .
Hankel functions are complex for real values of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046310/h0463106.png" />; however,
+
\end{align*}
 
+
The Hankel functions of half-integral $p = n +\frac{1}{2}$, $n\in \mathbb Z$, can be expressed in terms of elementary functions, in particular:
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046310/h0463107.png" /></td> </tr></table>
+
\begin{align*}
 
+
&H^{(1)}_{1/2} (z) = \sqrt{\frac{2}{\pi z}} \frac{e^{iz}}{i}\, ,\\
are real if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046310/h0463108.png" /> is real and positive. Hankel functions have simple asymptotic representations for large <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046310/h0463109.png" />:
+
&H^{(2)}_{1/2} (z) = -\sqrt{\frac{2}{\pi z}} \frac{e^{-iz}}{i}\, .
 
+
\end{align*}
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046310/h04631010.png" /></td> </tr></table>
 
 
 
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046310/h04631011.png" /></td> </tr></table>
 
 
 
The Hankel function of a  "half-integral" argument <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046310/h04631012.png" /> can be expressed in terms of elementary functions, in particular:
 
 
 
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046310/h04631013.png" /></td> </tr></table>
 
 
 
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046310/h04631014.png" /></td> </tr></table>
 
 
 
These functions were introduced by H. Hankel in 1869.
 
 
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  E. Jahnke,   F. Emde,   F. Lösch,  "Tafeln höheren Funktionen" , Teubner  (1966)</TD></TR></table>
 
 
 
 
 
 
 
====Comments====
 
 
See [[Cylinder functions|Cylinder functions]] for additional references.
 
See [[Cylinder functions|Cylinder functions]] for additional references.

Latest revision as of 16:10, 2 April 2014

2020 Mathematics Subject Classification: Primary: 33C10 [MSN][ZBL]

More commonly called Bessel functions (or Cylinder functions) of the third kind. These functions were introduced by H. Hankel in 1869.

They may be defined in terms of Bessel functions of the first and second kind (see Neumann function for the latter) as follows: \begin{align} &H^{(1)}_\nu = J_\nu + i Y_\nu\, ,\label{e:def_1}\\ &H^{(2)}_\nu = J_\nu - i Y_\nu\, .\label{e:def_2}\\ \end{align} $\nu$ is here a complex parameter. In particular, when $\nu\not\in \mathbb Z$, we have the expressions \begin{align} &H^{(1)}_\nu (z) = \frac{J_{-\nu} (z) - e^{-\nu \pi i} J_\nu (z)}{i\sin \nu\pi}\\ &H^{(2)}_\nu (z) = \frac{J_{-\nu} (z) - e^{\nu \pi i} J_\nu (z)}{-i\sin \nu\pi i}\, , \end{align} whereas for integer values $n$ of $\nu$ analogous formulas hold if we replace the right hand sides with their limits as $\nu\to n$.

This implies the important relations \begin{align*} & H^{(1}_{-\nu} (z) = e^{i\nu \pi} H^{(1)}_\nu (z)\\ &H^{(2)}_{-\nu} (z) = e^{-i\nu \pi} H^{(2)}_\nu (z)\, . \end{align*} When $\nu=p$ is real, the Bessel functions of the first kind take real values on the real axis. So it is obvious that, for $\nu = p$ real, $H^{(1)}_p$ and $H^{(2)}_p$ take complex conjugate values on the real axis. Moreover, \[ i^{p+1} H^{(1)}_p (ix) \qquad \mbox{and} \qquad i^{-(p+1)} H^{(2)}_p (-ix) \] are real if $x$ is real and positive.

Hankel functions have simple asymptotic formulas for large $|z|$ when $\nu=p$ is real: \begin{align*} &H^{(1)}_p (z) \sim \sqrt{\frac{2}{\pi z}} \exp \left(i \left(z - p \frac{\pi}{2} - \frac{\pi}{4}\right)\right)\, ,\\ &H^{(2)}_p (z) \sim \sqrt{\frac{2}{\pi z}} \exp \left(- i \left(z - p \frac{\pi}{2} - \frac{\pi}{4}\right)\right)\, . \end{align*} The Hankel functions of half-integral $p = n +\frac{1}{2}$, $n\in \mathbb Z$, can be expressed in terms of elementary functions, in particular: \begin{align*} &H^{(1)}_{1/2} (z) = \sqrt{\frac{2}{\pi z}} \frac{e^{iz}}{i}\, ,\\ &H^{(2)}_{1/2} (z) = -\sqrt{\frac{2}{\pi z}} \frac{e^{-iz}}{i}\, . \end{align*} See Cylinder functions for additional references.

How to Cite This Entry:
Hankel functions. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Hankel_functions&oldid=31410
This article was adapted from an original article by P.I. Lizorkin (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article