Namespaces
Variants
Actions

Difference between revisions of "Leibniz criterion"

From Encyclopedia of Mathematics
Jump to: navigation, search
m
m
 
Line 1: Line 1:
 +
{{MSC|40A05}}
 
{{TEX|done}}
 
{{TEX|done}}
  
Line 7: Line 8:
 
\sum_{n=1}^{\infty}(-1)^{n+1}a_n,\quad a_n>0,
 
\sum_{n=1}^{\infty}(-1)^{n+1}a_n,\quad a_n>0,
 
\end{equation}
 
\end{equation}
decrease monotonically ($a_n>a_{n+1}$, $n=1,2,\dots$) and tend to zero ( $\lim\limits_{n\to\infty}a_n=0$ ), then the series converges; moreover, a remainder of the series,
+
decrease monotonically ($a_n\geq a_{n+1}$, $n=1,2,\dots$) and tend to zero ( $\lim\limits_{n\to\infty}a_n=0$ ), then the series converges; moreover, a remainder of the series,
 
\begin{equation}
 
\begin{equation}
 
\sum_{k=n+1}^{\infty}(-1)^{k+1}a_k,
 
\sum_{k=n+1}^{\infty}(-1)^{k+1}a_k,
Line 18: Line 19:
  
 
====References====
 
====References====
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  K. Knopp,  "Theorie und Anwendung der unendlichen Reihen" , Springer  (1964)  (English translation: Blackie, 1951 &amp; Dover, reprint, 1990)</TD></TR></table>
+
{|
 +
|-
 +
|valign="top"|{{Ref|Kn}}|| K. Knopp,  "Theorie und Anwendung der unendlichen Reihen" , Springer  (1964)  (English translation: Blackie, 1951 &amp; Dover, reprint, 1990)
 +
|-
 +
|}

Latest revision as of 20:16, 9 December 2013

2020 Mathematics Subject Classification: Primary: 40A05 [MSN][ZBL]

for convergence of an alternating series

If the terms of an alternating series \begin{equation} \sum_{n=1}^{\infty}(-1)^{n+1}a_n,\quad a_n>0, \end{equation} decrease monotonically ($a_n\geq a_{n+1}$, $n=1,2,\dots$) and tend to zero ( $\lim\limits_{n\to\infty}a_n=0$ ), then the series converges; moreover, a remainder of the series, \begin{equation} \sum_{k=n+1}^{\infty}(-1)^{k+1}a_k, \end{equation} has the sign of its first term and is less than it in absolute value. The criterion was established by G. Leibniz in 1682.


Examples

References

[Kn] K. Knopp, "Theorie und Anwendung der unendlichen Reihen" , Springer (1964) (English translation: Blackie, 1951 & Dover, reprint, 1990)
How to Cite This Entry:
Leibniz criterion. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Leibniz_criterion&oldid=30911
This article was adapted from an original article by V.I. Bityutskov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article