Difference between revisions of "User:Matteo.focardi/sandbox"
(Created page with "A theorem on the relation between the concepts of almost-everywhere convergence and uniform convergence of a sequence of functions. Let $\mu$ be a [[Set function|$\sigma$-ad...") |
|||
Line 1: | Line 1: | ||
− | A theorem on the relation between the concepts of almost-everywhere convergence and uniform convergence of a sequence of functions. Let $\mu$ be a [[Set function|$\sigma$-additive measure]] defined on a [[Algebra of sets|$\sigma$-algebra]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035120/e0351204.png" />, let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035120/e0351205.png" />, $\mu(E)<+\infty$, and let a sequence of $\mu$-measurable almost-everywhere finite functions $f_k(x)$, $x\in E$, $k=1,2,\ldots$, converge almost-everywhere to a function $f(x)$. Then for any $\varepsilon>0$ there exists a measurable set $E_\varepsilon\subset E$ such that $\mu(E\setminus E_\varepsilon)<\varepsilon$, and the sequence | + | {{MSC|28A}} |
+ | |||
+ | [[Category:Classical measure theory]] | ||
+ | |||
+ | {{TEX|done}} | ||
+ | |||
+ | |||
+ | A theorem on the relation between the concepts of almost-everywhere convergence and uniform convergence of a sequence of functions. Let $\mu$ be a [[Set function|$\sigma$-additive measure]] defined on a [[Algebra of sets|$\sigma$-algebra]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035120/e0351204.png" />, let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035120/e0351205.png" />, $\mu(E)<+\infty$, and let a sequence of $\mu$-measurable almost-everywhere finite functions $f_k(x)$, $x\in E$, $k=1,2,\ldots$, converge almost-everywhere to a function $f(x)$. Then for any $\varepsilon>0$ there exists a measurable set $E_\varepsilon\subset E$ such that $\mu(E\setminus E_\varepsilon)<\varepsilon$, and the sequence $f_k(x)$ converges to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035120/e03512016.png" /> uniformly on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035120/e03512017.png" />. For the case where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035120/e03512018.png" /> is the Lebesgue measure on the line this was proved by D.F. Egorov [[#References|[1]]]. | ||
Egorov's theorem has various generalizations extending its potentialities. For example, let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035120/e03512019.png" /> be a sequence of measurable mappings of a locally compact space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035120/e03512020.png" /> into a metrizable space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035120/e03512021.png" /> for which the limit | Egorov's theorem has various generalizations extending its potentialities. For example, let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035120/e03512019.png" /> be a sequence of measurable mappings of a locally compact space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035120/e03512020.png" /> into a metrizable space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035120/e03512021.png" /> for which the limit |
Revision as of 11:42, 18 October 2012
2020 Mathematics Subject Classification: Primary: 28A [MSN][ZBL]
A theorem on the relation between the concepts of almost-everywhere convergence and uniform convergence of a sequence of functions. Let $\mu$ be a $\sigma$-additive measure defined on a $\sigma$-algebra , let , $\mu(E)<+\infty$, and let a sequence of $\mu$-measurable almost-everywhere finite functions $f_k(x)$, $x\in E$, $k=1,2,\ldots$, converge almost-everywhere to a function $f(x)$. Then for any $\varepsilon>0$ there exists a measurable set $E_\varepsilon\subset E$ such that $\mu(E\setminus E_\varepsilon)<\varepsilon$, and the sequence $f_k(x)$ converges to uniformly on . For the case where is the Lebesgue measure on the line this was proved by D.F. Egorov [1].
Egorov's theorem has various generalizations extending its potentialities. For example, let be a sequence of measurable mappings of a locally compact space into a metrizable space for which the limit
exists locally almost-everywhere on with respect to a Radon measure . Then is measurable with respect to , and for any compact set and there is a compact set such that , and the restriction of to is continuous and converges to uniformly on . The conclusion of Egorov's theorem may be false if is not metrizable.
References
[1] | D.F. Egorov, "Sur les suites de fonctions mesurables" C.R. Acad. Sci. Paris , 152 (1911) pp. 244–246 |
[2] | A.N. Kolmogorov, S.V. Fomin, "Elements of the theory of functions and functional analysis" , 1–2 , Graylock (1957–1961) (Translated from Russian) MR1025126 MR0708717 MR0630899 MR0435771 MR0377444 MR0234241 MR0215962 MR0118796 MR1530727 MR0118795 MR0085462 MR0070045 Zbl 0932.46001 Zbl 0672.46001 Zbl 0501.46001 Zbl 0501.46002 Zbl 0235.46001 Zbl 0103.08801 |
[3] | N. Bourbaki, "Elements of mathematics. Integration" , Addison-Wesley (1975) pp. Chapt.6;7;8 (Translated from French) MR0583191 Zbl 1116.28002 Zbl 1106.46005 Zbl 1106.46006 Zbl 1182.28002 Zbl 1182.28001 Zbl 1095.28002 Zbl 1095.28001 Zbl 0156.06001 |
Comments
In 1970, G. Mokobodzki obtained a nice generalization of Egorov's theorem (see [a2], [a3]): Let , and be as above. Let be a set of -measurable finite functions that is compact in the topology of pointwise convergence. Then there is a sequence of disjoint sets belonging to such that the support of is contained in and such that, for every , the set of restrictions to of the elements of is compact in the topology of uniform convergence.
Egorov's theorem is related to the Luzin -property.
References
[a1] | P.R. Halmos, "Measure theory" , v. Nostrand (1950) MR0033869 Zbl 0040.16802 |
[a2] | C. Dellacherie, P.A. Meyer, "Probabilities and potential" , C , North-Holland (1988) (Translated from French) MR0939365 Zbl 0716.60001 |
[a3] | D. Revuz, "Markov chains" , North-Holland (1975) MR0415773 Zbl 0332.60045 |
Matteo.focardi/sandbox. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Matteo.focardi/sandbox&oldid=28507