|
|
Line 1: |
Line 1: |
− | One of the numerical characteristics of a function of several variables. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046400/h0464001.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046400/h0464002.png" /> be a function on the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046400/h0464003.png" />-dimensional parallelepiped
| |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046400/h0464004.png" /></td> </tr></table>
| |
| | | |
− | and let
| |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046400/h0464005.png" /></td> </tr></table>
| + | {{MSC|26B30|26A45,26}} |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046400/h0464006.png" /></td> </tr></table>
| + | [[Category:Analysis]] |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046400/h0464007.png" /></td> </tr></table>
| + | {{TEX|done}} |
| | | |
− | Next, let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046400/h0464008.png" /> be an arbitrary partition of the parallelepiped by hypersurfaces
| + | A generalization to functions of several variables of the [[Variation of a function]] of one variable, proposed by |
| + | Hardy in {{Cite|Har}} (see also {{Cite|Ha}}). However the modern theory of functions of bounded variation uses a different generalization (see [[Function of bounded variation]] and [[Variation of a function]]). Therefore the Hardy variation is seldomly used nowadays. |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046400/h0464009.png" /></td> </tr></table>
| + | Consider a rectangle $R:= [a_1, b_1]\times \ldots \times [a_n, b_n]\subset \mathbb R^n$ and a function $f:R\to \mathbb R$. We define |
| + | \[ |
| + | \Delta_{h_k} (f, x) := f (x_1, \ldots, x_k+ h_k, \ldots, x_n) - f(x_1, \ldots, x_k, \ldots x_n) |
| + | \] |
| + | and, recursively, |
| + | \[ |
| + | \Delta_{h_1h_2\ldots h_k} (f, x):= \Delta_{h_k} \left(\Delta_{h_1\ldots h_{k-1}} , x\right)\, . |
| + | \] |
| + | Consider next the collection $\Pi_k$ of finite ordered families $\pi_k$ of points $t_k^1 < t_k^2< \ldots < t_k^{N_k+1}\in [a_k, b_k]$. For each such $\pi_k$ we denote by $h^i_k$ the difference $t_k^{i+1}- t_k^i$. |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046400/h04640010.png" /></td> </tr></table>
| + | '''Definition''' We define $\tilde{H}_n (f)$ as the supremum over $(\pi_1, \ldots, \pi_n)\in \Pi_1\times \ldots \times \Pi_n$ of the sums |
| + | \[ |
| + | \sum_{i_1=1}^{N_1} \ldots \sum_{i_n=1}^{N_n} \left|\Delta_{h^{i_1}_1\ldots h^{i_n}_n} \left(f, \left(x^{i_1}_1, \ldots x^{i_n}_n\right)\right)\right|\, . |
| + | \] |
| + | Finally, let $\alpha, \bar{\alpha}$ be pair of ordered subsets which gives a partition of |
| + | $\{1, \ldots, x_n\}$. For each such pair and for each |
| + | \[ |
| + | (y_1, \ldots, y_s)\in [a_{\alpha_1}, b_{\alpha_1}]\times \ldots \times [a_{\alpha_s}, b_{\alpha_s}] |
| + | \] |
| + | we denote by $f^y_\alpha$ the function of $n-s$ variables $z_1, \ldots, z_{n-s}$ given by $f(x_1, \ldots, x_n)$ |
| + | where $x_{\alpha_i} = y_i$ and $x_{\bar{\alpha}_j}= z_j$. The Hardy variation of $f$ is then given by |
| + | \[ |
| + | V_H (f) = \sup_{\alpha}\; \sup_y\; \tilde{H}_{n-s} \left(f^y_\alpha\right)\, . |
| + | \] |
| + | If $V_H (f)<\infty$, then one says that the function $f$ has bounded (finite) Hardy variation. |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046400/h04640011.png" /></td> </tr></table>
| + | The original definition of Hardy considered the case $n=2$ and the author introduced it to generalize the [[Jordan criterion]] on the converge of Fourier series to Fourier double series. |
| + | In particular in {{Cite|Har}} he proved the following |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046400/h04640012.png" /></td> </tr></table>
| + | '''Theorem''' |
| + | Assume a function $f:[0,2\pi]^2\to \mathbb R$ has finite Hardy variation. Then at every point $(x_1, x_2)$ the rectangular partial sums of the Fourier double series of $f$ converges to |
| + | \[ |
| + | \frac{1}{4}\left(f(x_1^+, x_2^+) + f (x_1^-, x_2^-) - f(x_1^+, x_2^-)- f(x_1^-, x_2^+)\right) |
| + | \] |
| + | (where |
| + | \[ |
| + | f (x_1^+, x_2^+) = \lim_{(y_1, y_2)\to 0, y_1>0, y_2>0} f(x_1+y_1, x_2+y_2) |
| + | \] |
| + | and the limits $f (x_1^-, x_2^-)$, $f(x_1^+, x_2^-)$, $f(x_1^-, x_2^+)$ are defined analogously). |
| | | |
− | into <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046400/h04640013.png" />-dimensional parallelepipeds and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046400/h04640014.png" /> be the class of all functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046400/h04640015.png" /> for which
| + | A function $f$ has finite Hardy variation if and only if it can be written as the difference of two functions $f^+-f^-$ such that $\Delta_{h_1, \ldots, h_n} (f, x)\geq 0$ for any choice of nonnegative increments $h_1, \ldots, h_n$. This statement generalizes, therefore, the [[Jordan decomposition]] of a [[Function of bounded variation|function of bounded variation]] of one real variable. If a function has bounded Hardy variation, then it also has necessarily bounded [[Arzelà variation]]. |
− | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046400/h04640016.png" /></td> </tr></table>
| |
− | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046400/h04640017.png" /></td> </tr></table>
| |
− | | |
− | Finally, let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046400/h04640018.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046400/h04640019.png" />, be an integer-valued vector whose coordinates satisfy the inequalities <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046400/h04640020.png" /> and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046400/h04640021.png" /> be the integer-valued vector of dimension <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046400/h04640022.png" /> such that its coordinates form a strictly-increasing sequence and consist of all those numbers <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046400/h04640023.png" /> that are not contained among <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046400/h04640024.png" />. Then every point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046400/h04640025.png" /> can be written in the form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046400/h04640026.png" />. If the coordinates <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046400/h04640027.png" /> of a point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046400/h04640028.png" /> are fixed to the values <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046400/h04640029.png" />, then one writes <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046400/h04640030.png" />.
| |
− | | |
− | The Hardy variation of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046400/h04640031.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046400/h04640032.png" /> is:
| |
− | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046400/h04640033.png" /></td> </tr></table>
| |
− | | |
− | If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046400/h04640034.png" />, then one says that the function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046400/h04640035.png" /> has bounded (finite) Hardy variation on the parallelepiped <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046400/h04640036.png" />, and the class of all such functions is denoted by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046400/h04640037.png" />. For <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046400/h04640038.png" /> this class was introduced by G.H. Hardy in [[#References|[1]]] (see also [[#References|[2]]]) in connection with the study of the convergence of Fourier double series. He proved that the rectangular partial sums of the Fourier double series of a function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046400/h04640039.png" /> of class <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046400/h04640040.png" /> (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046400/h04640041.png" />), of period <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046400/h04640042.png" /> in each variable, converge at every point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046400/h04640043.png" /> to the number
| |
− | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046400/h04640044.png" /></td> </tr></table>
| |
− | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046400/h04640045.png" /></td> </tr></table>
| |
− | | |
− | where
| |
− | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046400/h04640046.png" /></td> </tr></table>
| |
− | | |
− | For a function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046400/h04640047.png" /> to belong to the class <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046400/h04640048.png" /> it is necessary and sufficient that it can be represented in the form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046400/h04640049.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046400/h04640050.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046400/h04640051.png" /> are finite functions on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046400/h04640052.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046400/h04640053.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046400/h04640054.png" />, for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046400/h04640055.png" /> and for all admissible increments <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046400/h04640056.png" />. The class <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046400/h04640057.png" /> is contained in the class <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046400/h04640058.png" /> of functions having bounded [[Arzelà variation|Arzelà variation]] on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h046/h046400/h04640059.png" />.
| |
| | | |
| ====References==== | | ====References==== |
− | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> G.H. Hardy, "On double Fourier series and especially those which represent the double zeta-function with real and incommensurable parameters" ''Quarterly J. Math.'' , '''37''' (1905) pp. 53–79</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> H. Hahn, "Theorie der reellen Funktionen" , '''1''' , Springer (1921)</TD></TR></table>
| + | {| |
| + | |- |
| + | |valign="top"|{{Ref|Har}}|| G.H. Hardy, "On double Fourier series and especially those which represent the double zeta-function with real and incommensurable parameters" ''Quarterly J. Math.'' , '''37''' (1905) pp. 53–79. |
| + | |- |
| + | |valign="top"|{{Ref|Ha}}|| H. Hahn, "Theorie der reellen Funktionen" , '''1''' , Springer (1921). |
| + | |- |
| + | |} |
2020 Mathematics Subject Classification: Primary: 26B30 Secondary: 26A4526-XX [MSN][ZBL]
A generalization to functions of several variables of the Variation of a function of one variable, proposed by
Hardy in [Har] (see also [Ha]). However the modern theory of functions of bounded variation uses a different generalization (see Function of bounded variation and Variation of a function). Therefore the Hardy variation is seldomly used nowadays.
Consider a rectangle $R:= [a_1, b_1]\times \ldots \times [a_n, b_n]\subset \mathbb R^n$ and a function $f:R\to \mathbb R$. We define
\[
\Delta_{h_k} (f, x) := f (x_1, \ldots, x_k+ h_k, \ldots, x_n) - f(x_1, \ldots, x_k, \ldots x_n)
\]
and, recursively,
\[
\Delta_{h_1h_2\ldots h_k} (f, x):= \Delta_{h_k} \left(\Delta_{h_1\ldots h_{k-1}} , x\right)\, .
\]
Consider next the collection $\Pi_k$ of finite ordered families $\pi_k$ of points $t_k^1 < t_k^2< \ldots < t_k^{N_k+1}\in [a_k, b_k]$. For each such $\pi_k$ we denote by $h^i_k$ the difference $t_k^{i+1}- t_k^i$.
Definition We define $\tilde{H}_n (f)$ as the supremum over $(\pi_1, \ldots, \pi_n)\in \Pi_1\times \ldots \times \Pi_n$ of the sums
\[
\sum_{i_1=1}^{N_1} \ldots \sum_{i_n=1}^{N_n} \left|\Delta_{h^{i_1}_1\ldots h^{i_n}_n} \left(f, \left(x^{i_1}_1, \ldots x^{i_n}_n\right)\right)\right|\, .
\]
Finally, let $\alpha, \bar{\alpha}$ be pair of ordered subsets which gives a partition of
$\{1, \ldots, x_n\}$. For each such pair and for each
\[
(y_1, \ldots, y_s)\in [a_{\alpha_1}, b_{\alpha_1}]\times \ldots \times [a_{\alpha_s}, b_{\alpha_s}]
\]
we denote by $f^y_\alpha$ the function of $n-s$ variables $z_1, \ldots, z_{n-s}$ given by $f(x_1, \ldots, x_n)$
where $x_{\alpha_i} = y_i$ and $x_{\bar{\alpha}_j}= z_j$. The Hardy variation of $f$ is then given by
\[
V_H (f) = \sup_{\alpha}\; \sup_y\; \tilde{H}_{n-s} \left(f^y_\alpha\right)\, .
\]
If $V_H (f)<\infty$, then one says that the function $f$ has bounded (finite) Hardy variation.
The original definition of Hardy considered the case $n=2$ and the author introduced it to generalize the Jordan criterion on the converge of Fourier series to Fourier double series.
In particular in [Har] he proved the following
Theorem
Assume a function $f:[0,2\pi]^2\to \mathbb R$ has finite Hardy variation. Then at every point $(x_1, x_2)$ the rectangular partial sums of the Fourier double series of $f$ converges to
\[
\frac{1}{4}\left(f(x_1^+, x_2^+) + f (x_1^-, x_2^-) - f(x_1^+, x_2^-)- f(x_1^-, x_2^+)\right)
\]
(where
\[
f (x_1^+, x_2^+) = \lim_{(y_1, y_2)\to 0, y_1>0, y_2>0} f(x_1+y_1, x_2+y_2)
\]
and the limits $f (x_1^-, x_2^-)$, $f(x_1^+, x_2^-)$, $f(x_1^-, x_2^+)$ are defined analogously).
A function $f$ has finite Hardy variation if and only if it can be written as the difference of two functions $f^+-f^-$ such that $\Delta_{h_1, \ldots, h_n} (f, x)\geq 0$ for any choice of nonnegative increments $h_1, \ldots, h_n$. This statement generalizes, therefore, the Jordan decomposition of a function of bounded variation of one real variable. If a function has bounded Hardy variation, then it also has necessarily bounded Arzelà variation.
References
[Har] |
G.H. Hardy, "On double Fourier series and especially those which represent the double zeta-function with real and incommensurable parameters" Quarterly J. Math. , 37 (1905) pp. 53–79.
|
[Ha] |
H. Hahn, "Theorie der reellen Funktionen" , 1 , Springer (1921).
|