Difference between revisions of "Cramér-von Mises test"
Ulf Rehmann (talk | contribs) m (moved Cramer-von Mises test to Cramér-von Mises test: accented title) |
(refs format) |
||
Line 7: | Line 7: | ||
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027010/c0270104.png" /></td> </tr></table> | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027010/c0270104.png" /></td> </tr></table> | ||
− | where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027010/c0270105.png" /> is the [[Empirical distribution|empirical distribution]] function constructed from the sample <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027010/c0270106.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027010/c0270107.png" /> is a certain non-negative function defined on the interval <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027010/c0270108.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027010/c0270109.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027010/c02701010.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027010/c02701011.png" /> are integrable on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027010/c02701012.png" />. Tests of this type, based on the "square metric" , were first considered by H. Cramér | + | where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027010/c0270105.png" /> is the [[Empirical distribution|empirical distribution]] function constructed from the sample <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027010/c0270106.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027010/c0270107.png" /> is a certain non-negative function defined on the interval <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027010/c0270108.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027010/c0270109.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027010/c02701010.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027010/c02701011.png" /> are integrable on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027010/c02701012.png" />. Tests of this type, based on the "square metric" , were first considered by H. Cramér {{Cite|C}} and R. von Mises {{Cite|M}}. N.V. Smirnov proposed putting <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027010/c02701013.png" />, and showed that in that case, if the hypothesis <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027010/c02701014.png" /> is valid and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027010/c02701015.png" />, the statistic <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027010/c02701016.png" /> has in the limit an [[Chi-squared test| "omega-squared" distribution]], independent of the hypothetical distribution function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027010/c02701017.png" />. A statistical test for testing <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027010/c02701018.png" /> based on the statistic <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027010/c02701019.png" />, is called an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027010/c02701020.png" /> (Cramér–von Mises–Smirnov) test, and the numerical value of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027010/c02701022.png" /> is found using the following representation: |
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027010/c02701023.png" /></td> </tr></table> | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027010/c02701023.png" /></td> </tr></table> | ||
− | where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027010/c02701024.png" /> is the variational series based on the sample <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027010/c02701025.png" />. According to the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027010/c02701026.png" /> test with significance level <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027010/c02701027.png" />, the hypothesis <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027010/c02701028.png" /> is rejected whenever <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027010/c02701029.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027010/c02701030.png" /> is the upper <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027010/c02701031.png" />-quantile of the distribution of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027010/c02701032.png" />, i.e. <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027010/c02701033.png" />. T.W. Anderson and D.A. Darling proposed a similarly constructed test, based on the statistic <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027010/c02701034.png" /> (see | + | where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027010/c02701024.png" /> is the variational series based on the sample <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027010/c02701025.png" />. According to the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027010/c02701026.png" /> test with significance level <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027010/c02701027.png" />, the hypothesis <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027010/c02701028.png" /> is rejected whenever <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027010/c02701029.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027010/c02701030.png" /> is the upper <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027010/c02701031.png" />-quantile of the distribution of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027010/c02701032.png" />, i.e. <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027010/c02701033.png" />. T.W. Anderson and D.A. Darling proposed a similarly constructed test, based on the statistic <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027010/c02701034.png" /> (see {{Cite|AD}}). |
====References==== | ====References==== | ||
− | + | {| | |
− | + | |valign="top"|{{Ref|C}}|| H. Cramér, "Sannolikhetskalkylen och nåcgra av dess användningar" , Stockholm (1926) | |
− | + | |- | |
+ | |valign="top"|{{Ref|M}}|| R. von Mises, "Mathematical theory of probability and statistics" (1964) (Translated from German) | ||
+ | |- | ||
+ | |valign="top"|{{Ref|S}}|| N.V. Smirnov, "On the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027010/c02701035.png" />-distribution of von Mises" ''Mat. Sb.'' , '''2''' : 5 (1937) pp. 973–993 (In Russian) (French abstract) | ||
+ | |- | ||
+ | |valign="top"|{{Ref|BS}}|| L.N. Bol'shev, N.V. Smirnov, "Tables of mathematical statistics" , ''Libr. math. tables'' , '''46''' , Nauka (1983) (In Russian) (Processed by L.S. Bark and E.S. Kedrova) | ||
+ | |- | ||
+ | |valign="top"|{{Ref|AD}}|| T.W. Anderson, D.A. Darling, "Asymptotic theory of certain "goodness-of-fit" criteria based on stochastic processes" ''Ann. of Math. Stat.'' , '''23''' (1952) pp. 193–212 | ||
+ | |} | ||
====Comments==== | ====Comments==== | ||
Usually, the choice <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027010/c02701036.png" /> is simply called the Cramér–von Mises test in Western literature. However, Smirnov first proposed making this choice and rewrote the statistic in the distribution-free form above. The limit distribution of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027010/c02701037.png" /> is independent of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027010/c02701038.png" /> whatever the choice of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027010/c02701039.png" />. (The term "square metric" refers to the expression <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027010/c02701040.png" />, not to some choice of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027010/c02701041.png" />.) Cramér actually considered the test with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027010/c02701042.png" /> replaced by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027010/c02701043.png" />, while von Mises used <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027010/c02701044.png" />. | Usually, the choice <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027010/c02701036.png" /> is simply called the Cramér–von Mises test in Western literature. However, Smirnov first proposed making this choice and rewrote the statistic in the distribution-free form above. The limit distribution of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027010/c02701037.png" /> is independent of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027010/c02701038.png" /> whatever the choice of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027010/c02701039.png" />. (The term "square metric" refers to the expression <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027010/c02701040.png" />, not to some choice of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027010/c02701041.png" />.) Cramér actually considered the test with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027010/c02701042.png" /> replaced by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027010/c02701043.png" />, while von Mises used <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c027/c027010/c02701044.png" />. | ||
− | An alternative to | + | An alternative to {{Cite|C}} is {{Cite|C2}}. |
====References==== | ====References==== | ||
− | + | {| | |
+ | |valign="top"|{{Ref|C2}}|| H. Cramér, "On the composition of elementary errors II" ''Skand. Aktuarietidskr.'' (1928) pp. 171–280 | ||
+ | |} |
Revision as of 14:53, 11 May 2012
2020 Mathematics Subject Classification: Primary: 62G10 [MSN][ZBL]
A non-parametric test for testing a hypothesis which states that independent and identically-distributed random variables have a given continuous distribution function . The Cramér–von Mises test is based on a statistic of the type
where is the empirical distribution function constructed from the sample and is a certain non-negative function defined on the interval such that , and are integrable on . Tests of this type, based on the "square metric" , were first considered by H. Cramér [C] and R. von Mises [M]. N.V. Smirnov proposed putting , and showed that in that case, if the hypothesis is valid and , the statistic has in the limit an "omega-squared" distribution, independent of the hypothetical distribution function . A statistical test for testing based on the statistic , is called an (Cramér–von Mises–Smirnov) test, and the numerical value of is found using the following representation:
where is the variational series based on the sample . According to the test with significance level , the hypothesis is rejected whenever , where is the upper -quantile of the distribution of , i.e. . T.W. Anderson and D.A. Darling proposed a similarly constructed test, based on the statistic (see [AD]).
References
[C] | H. Cramér, "Sannolikhetskalkylen och nåcgra av dess användningar" , Stockholm (1926) |
[M] | R. von Mises, "Mathematical theory of probability and statistics" (1964) (Translated from German) |
[S] | N.V. Smirnov, "On the -distribution of von Mises" Mat. Sb. , 2 : 5 (1937) pp. 973–993 (In Russian) (French abstract) |
[BS] | L.N. Bol'shev, N.V. Smirnov, "Tables of mathematical statistics" , Libr. math. tables , 46 , Nauka (1983) (In Russian) (Processed by L.S. Bark and E.S. Kedrova) |
[AD] | T.W. Anderson, D.A. Darling, "Asymptotic theory of certain "goodness-of-fit" criteria based on stochastic processes" Ann. of Math. Stat. , 23 (1952) pp. 193–212 |
Comments
Usually, the choice is simply called the Cramér–von Mises test in Western literature. However, Smirnov first proposed making this choice and rewrote the statistic in the distribution-free form above. The limit distribution of is independent of whatever the choice of . (The term "square metric" refers to the expression , not to some choice of .) Cramér actually considered the test with replaced by , while von Mises used .
An alternative to [C] is [C2].
References
[C2] | H. Cramér, "On the composition of elementary errors II" Skand. Aktuarietidskr. (1928) pp. 171–280 |
Cramér-von Mises test. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Cram%C3%A9r-von_Mises_test&oldid=26398