Namespaces
Variants
Actions

Difference between revisions of "Darboux theorem"

From Encyclopedia of Mathematics
Jump to: navigation, search
m
Line 11: Line 11:
 
$$
 
$$
  
The matrix $S(z)$ of a symplectic structure, $S_{ij}(z)=\omega(\frac{\partial}{\partial z_i},\frac{\partial}{\partial z_i})$  in any local coordinate system $(z_1,\dots,z_{2n})$ is antisymmetric and nondegenerate: $\omega=\frac12\sum S_{ij}(z)\,\rd z_i\land \rd z_j$.  
+
The matrix $S(z)$ of a symplectic structure, $S_{ij}(z)=\omega(\frac{\partial}{\partial z_i},\frac{\partial}{\partial z_i})=-S_{ji}(z)$  in any local coordinate system $(z_1,\dots,z_{2n})$ is antisymmetric and nondegenerate: $\omega=\frac12\sum_{1}^{2n} S_{ij}(z)\,\rd z_i\land \rd z_j$.  
  
 
The ''standard symplectic structure'' on $\R^{2n}$ in the ''standard canonical coordinates'' $(x_1,\dots,x_n,p_1,\dots,p_n)$ is given by the form
 
The ''standard symplectic structure'' on $\R^{2n}$ in the ''standard canonical coordinates'' $(x_1,\dots,x_n,p_1,\dots,p_n)$ is given by the form
Line 17: Line 17:
 
\omega=\sum_{i=1}^n \rd x_i\land \rd p_i.
 
\omega=\sum_{i=1}^n \rd x_i\land \rd p_i.
 
$$
 
$$
 +
 +
'''Theorem''' (Darboux theorem<ref name=AG>Arnold V. I., Givental A. B.</ref>, sometimes also referred<ref name=AG/> to as the Darboux-Weinstein theorem<ref>Guillemin V., Sternberg S., </ref>).
 +
 +
<references/>
  
 
== Darboux therem for intermediate values of differentiable functions ==
 
== Darboux therem for intermediate values of differentiable functions ==

Revision as of 12:54, 29 April 2012

Darboux theorem may may refer to one of the following assertions:

  • Darboux theorem on local canonical coordinates for symplectic structure;
  • Darboux theorem on intermediate values of the derivative of a function of one variable.

Darboux theorems for symplectic structure =

2020 Mathematics Subject Classification: Primary: 37Jxx,53Dxx [MSN][ZBL]

Recall that a symplectic structure on an even-dimensional manifold $M^{2n}$ is a closed nondegenerate 2-form $\omega$: $$ \omega\in\varLambda^2(M),\qquad \rd \omega=0,\qquad \forall v\in T_p M\quad \exists w\in T_p M:\ \omega_p(v,w)\ne0. $$

The matrix $S(z)$ of a symplectic structure, $S_{ij}(z)=\omega(\frac{\partial}{\partial z_i},\frac{\partial}{\partial z_i})=-S_{ji}(z)$ in any local coordinate system $(z_1,\dots,z_{2n})$ is antisymmetric and nondegenerate: $\omega=\frac12\sum_{1}^{2n} S_{ij}(z)\,\rd z_i\land \rd z_j$.

The standard symplectic structure on $\R^{2n}$ in the standard canonical coordinates $(x_1,\dots,x_n,p_1,\dots,p_n)$ is given by the form $$ \omega=\sum_{i=1}^n \rd x_i\land \rd p_i. $$

Theorem (Darboux theorem[1], sometimes also referred[1] to as the Darboux-Weinstein theorem[2]).

  1. 1.0 1.1 Arnold V. I., Givental A. B.
  2. Guillemin V., Sternberg S.,

Darboux therem for intermediate values of differentiable functions

How to Cite This Entry:
Darboux theorem. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Darboux_theorem&oldid=25694
This article was adapted from an original article by L.D. Kudryavtsev (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article