Namespaces
Variants
Actions

Difference between revisions of "Complementary series (of representations)"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (MR/ZBL numbers added)
Line 2: Line 2:
  
 
====References====
 
====References====
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  I.M. Gel'fand,  M.A. Naimark,  "Unitäre Darstellungen der klassischen Gruppen" , Akademie Verlag  (1957)  (Translated from Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  F.P. Greenleaf,  "Invariant means on topological groups and their applications" , v. Nostrand  (1969)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  M.A. Naimark,  "Linear representations of the Lorentz group" , Macmillan  (1964)  (Translated from Russian)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  B. Kostant,  "On the existence and irreducibility of certain series of representations"  ''Bull. Amer. Math. Soc.'' , '''75'''  (1969)  pp. 627–642</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top">  H. Petersson,  "Zur analytische Theorie der Grenzkreisgruppen I"  ''Math. Ann.'' , '''115'''  (1937–1938)  pp. 23–67</TD></TR></table>
+
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  I.M. Gel'fand,  M.A. Naimark,  "Unitäre Darstellungen der klassischen Gruppen" , Akademie Verlag  (1957)  (Translated from Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  F.P. Greenleaf,  "Invariant means on topological groups and their applications" , v. Nostrand  (1969) {{MR|0251549}} {{ZBL|0174.19001}} </TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  M.A. Naimark,  "Linear representations of the Lorentz group" , Macmillan  (1964)  (Translated from Russian) {{MR|0170977}} {{ZBL|0100.12001}} {{ZBL|0084.33904}} {{ZBL|0077.03602}} {{ZBL|0057.02104}} {{ZBL|0056.33802}} </TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  B. Kostant,  "On the existence and irreducibility of certain series of representations"  ''Bull. Amer. Math. Soc.'' , '''75'''  (1969)  pp. 627–642 {{MR|0245725}} {{ZBL|0229.22026}} </TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top">  H. Petersson,  "Zur analytische Theorie der Grenzkreisgruppen I"  ''Math. Ann.'' , '''115'''  (1937–1938)  pp. 23–67 {{MR|}} {{ZBL|}} </TD></TR></table>
  
  
Line 10: Line 10:
  
 
====References====
 
====References====
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  A.W. Knapp,  "Representation theory of semisimple groups" , Princeton Univ. Press  (1986)</TD></TR></table>
+
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  A.W. Knapp,  "Representation theory of semisimple groups" , Princeton Univ. Press  (1986) {{MR|0855239}} {{ZBL|0604.22001}} </TD></TR></table>

Revision as of 10:02, 24 March 2012

The family of irreducible continuous unitary representations of a locally compact group , the non-zero matrix elements of which cannot be approximated by finite linear combinations of matrix elements of the regular representation of in the topology of uniform convergence on compact sets in . The complementary series of the group is non-empty if and only if is not amenable, i.e. if the space contains no non-trivial left-invariant mean [2]. A connected Lie group has a non-empty complementary series if and only if the semi-simple quotient group of by its maximal connected solvable normal subgroup is non-compact (cf. Levi–Mal'tsev decomposition). A complementary series was first discovered for the complex classical groups [1]. At the time of writing (1987) complementary series have been fully described only for certain locally compact groups. Certain problems in number theory (see, for example, [5]) are equivalent to problems in the theory of representations connected with the complementary series of adèle groups of linear algebraic groups.

References

[1] I.M. Gel'fand, M.A. Naimark, "Unitäre Darstellungen der klassischen Gruppen" , Akademie Verlag (1957) (Translated from Russian)
[2] F.P. Greenleaf, "Invariant means on topological groups and their applications" , v. Nostrand (1969) MR0251549 Zbl 0174.19001
[3] M.A. Naimark, "Linear representations of the Lorentz group" , Macmillan (1964) (Translated from Russian) MR0170977 Zbl 0100.12001 Zbl 0084.33904 Zbl 0077.03602 Zbl 0057.02104 Zbl 0056.33802
[4] B. Kostant, "On the existence and irreducibility of certain series of representations" Bull. Amer. Math. Soc. , 75 (1969) pp. 627–642 MR0245725 Zbl 0229.22026
[5] H. Petersson, "Zur analytische Theorie der Grenzkreisgruppen I" Math. Ann. , 115 (1937–1938) pp. 23–67


Comments

In the theory of semi-simple Lie groups the notion of a complementary series representation often is introduced in a different fashion, viz. as a generalized principal series representation (cf. Continuous series of representations) that is (infinitesimally) unitary.

References

[a1] A.W. Knapp, "Representation theory of semisimple groups" , Princeton Univ. Press (1986) MR0855239 Zbl 0604.22001
How to Cite This Entry:
Complementary series (of representations). Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Complementary_series_(of_representations)&oldid=21829
This article was adapted from an original article by A.I. Shtern (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article